Adjacent vertices: различия между версиями

Материал из WEGA
Перейти к навигации Перейти к поиску
(Создана новая страница размером '''Adjacent vertices''' --- смежные вершины. '''1.''' Two different vertices that incident with the same edge are called '...)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Adjacent vertices''' --- смежные вершины.  
'''Adjacent vertices''' — ''[[смежные вершины]].''


'''1.''' Two different vertices that incident with the
'''1.''' Two different [[vertex|vertices]] that incident with the
same edge are called '''adjacent vertices'''.
same [[edge]] are called '''adjacent vertices'''.


'''2.''' In a digraph <math>G = (V,A)</math>, a vertex <math>u</math> is '''adjacent to''' <math>v</math> if
'''2.''' In a [[digraph]] <math>\,G = (V,A)</math>, a vertex <math>\,u</math> is '''adjacent to''' <math>\,v</math> if
<math>(u,v) \in A(G)</math>, and <math>u</math> is '''adjacent from''' <math>w</math>
<math>(u,v) \in A(G)</math>, and <math>\,u</math> is '''adjacent from''' <math>\,w</math>
if <math>(w,u) \in A(G)</math>.
if <math>(w,u) \in A(G)</math>.


'''3.''' On adjacent vertices in a hypergraph, see '' Partial edge''.
'''3.''' On adjacent vertices in a [[hypergraph]], see ''[[Partial edge]]''.

Текущая версия от 14:07, 17 ноября 2011

Adjacent verticesсмежные вершины.

1. Two different vertices that incident with the same edge are called adjacent vertices.

2. In a digraph [math]\displaystyle{ \,G = (V,A) }[/math], a vertex [math]\displaystyle{ \,u }[/math] is adjacent to [math]\displaystyle{ \,v }[/math] if [math]\displaystyle{ (u,v) \in A(G) }[/math], and [math]\displaystyle{ \,u }[/math] is adjacent from [math]\displaystyle{ \,w }[/math] if [math]\displaystyle{ (w,u) \in A(G) }[/math].

3. On adjacent vertices in a hypergraph, see Partial edge.