4644
правки
Irina (обсуждение | вклад) м (→Далее) |
Irina (обсуждение | вклад) м (→Далее) |
||
Строка 96: | Строка 96: | ||
<math>w'( \{ u, v \}) = \frac{w(u) + w(v)}{2} + w( \{u, v \}), w'(u) = 0</math>. | <math>w'( \{ u, v \}) = \frac{w(u) + w(v)}{2} + w( \{u, v \}), w'(u) = 0</math>. | ||
Обратите внимание, что вес треугольника при такой редукции остается неизменным. | |||
Следующим шагом будет использование быстрого произведения расстояний для поиска треугольника с максимальным весом в реберно-взвешенном графе с n вершинами. Рассмотрим множество вершин G как множество {1, ..., n}. Определим A как матрицу размера n x n, такую, что A[i, j] = - w({i, j}), если существует ребро {i, j}, и A[i, j] = <math>\infty</math> в противном случае. Утверждение заключается в том, что треугольник с весом не менее K включает вершину i тогда и только тогда, когда (A | Следующим шагом будет использование быстрого произведения расстояний для поиска треугольника с максимальным весом в реберно-взвешенном графе с n вершинами. Рассмотрим множество вершин G как множество {1, ..., n}. Определим A как матрицу размера n x n, такую, что A[i, j] = - w({i, j}), если существует ребро {i, j}, и A[i, j] = <math>\infty</math> в противном случае. Утверждение заключается в том, что треугольник с весом не менее K включает вершину i тогда и только тогда, когда <math>(A \otimes_d B \; A \otimes_d A) [i, j] \le -K</math>. Это объясняется тем, что данное неравенство выполняется тогда и только тогда, когда существуют отличные друг от друга j и k, такие, что {i, j}, {j, k}, {k, i} – ребра, и A[i, j] + A[j, k] + A[k, i] <math>\le</math> -K, то есть w({i, j}) + w({j, k}) + w({k, i}) <math>\ge</math> K. | ||
Поэтому, найдя i такой, что ( | Поэтому, найдя i, такой, что <math>(A \otimes_d B \; A \otimes_d A) [i, j]</math> минимизировано, мы получим вершину i, содержащуюся в максимальном треугольнике. Для получения фактического треугольника следует проверить все m ребер {j, k} на предмет того, является ли {i, j, k} треугольником. □ | ||
правки