Переименование: различия между версиями

Перейти к навигации Перейти к поиску
Строка 21: Строка 21:




Неформально, любая симплициальная карта m-сферы в <math>\mathcal{F}</math> может быть «заполнена» до симплициальной карты (m + 1)-диска. ''Остовом'' для <math>\mathcal{F}(S^n)</math> является подразделение <math>\sigma</math> входного симплекса <math>S^n</math> вместе с симплициальной картой <math>\phi: \sigma(S^n) \to \mathcal{F}(S^n)</math>, такое, что для каждой грани <math>S^m</math> из <math>S^n</math> выполняется соотношение <math>\phi: \sigma(S^m) \to \mathcal{F}(S^m)</math>. Остовы строятся по одной размерности за раз. Для каждого <math> \vec s = \langle P_i, v_i \rangle \in S^n \; \phi</math> переносит <math> \vec s</math> для одиночного выполнения <math>P_i</math> с входным значением <math> \vec v_i</math>. Для каждого S1 = (sE0, Es1) из теоремы 1 следует, что ф0о) и 0(?i) могут быть соединены путем в F(S1). Для каждого S2 = (sE0; Es1; Es2) построенные по индукции остовы определяют каждую грань граничного комплекса ф: criS^) ! F(S1)ij для i;j 2 f0; 1; 2g. Из теоремы 1 следует, что эту карту можно «заполнить», распространив подразделение с граничного комплекса на весь комплекс.
Неформально, любая симплициальная карта m-сферы в <math>\mathcal{F}</math> может быть «заполнена» до симплициальной карты (m + 1)-диска. ''Остовом'' для <math>\mathcal{F}(S^n)</math> является подразделение <math>\sigma</math> входного симплекса <math>S^n</math> вместе с симплициальной картой <math>\phi: \sigma(S^n) \to \mathcal{F}(S^n)</math>, такое, что для каждой грани <math>S^m</math> из <math>S^n</math> выполняется соотношение <math>\phi: \sigma(S^m) \to \mathcal{F}(S^m)</math>. Остовы строятся по одной размерности за раз. Для каждого <math> \vec s = \langle P_i, v_i \rangle \in S^n \; \phi</math> переносит <math> \vec s</math> для одиночного выполнения <math>P_i</math> с входным значением <math> \vec v_i</math>. Для каждого <math>S^1 = (\vec s_0, \vec s_1)</math> из теоремы 1 следует, что <math>\phi(\vec s_0)</math> и <math>\phi(\vec s_1)</math> могут быть соединены путем в <math>\mathcal{F}(S^1)</math>. Для каждого <math>S^1 = (\vec s_0, \vec s_1, \vec s_2)</math> построенные по индукции остовы определяют каждую грань граничного комплекса <math>\phi: \sigma(S^1_{ij}) \to \mathcal{F}(S^1)_{ij}</math> для <math>i, j \in \{ 0, 1, 2 \}</math>. Из теоремы 1 следует, что эту карту можно «заполнить», распространив подразделение с граничного комплекса на весь комплекс.




Теорема 2. Если у задачи принятия решения имеется протокол в асинхронной памяти чтения/записи, то каждый входной симплекс имеет остов.
'''Теорема 2. Если у задачи принятия решения имеется протокол в асинхронной памяти чтения/записи, то каждый входной симплекс имеет остов.'''




Строка 30: Строка 30:




Определение 1. Протокол основан на сравнении, если единственные операции, которые процесс может выполнять над идентификаторами процессора – это проверка на равенство и порядок; то есть, если даны два P и Q, процесс может проверить P = Q, P < Q и P > Q, но не может исследовать структуру идентификаторов более подробно.
'''Определение 1'''. Протокол ''основан на сравнении', если единственные операции, которые процесс может выполнять над идентификаторами процессора – это проверка на равенство и порядок; то есть, если даны два P и Q, процесс может проверить P = Q, P < Q и P > Q, но не может исследовать структуру идентификаторов более подробно.




4488

правок

Навигация