4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 34: | Строка 34: | ||
Рассмотрим молекулу, содержащую n соседних ядер с половинными спинами, расположенных в линию; они образуют биты строки. Эти спины изначально находятся в тепловом равновесии из-за их взаимодействия с окружающей средой. При комнатной температуре биты, находящиеся в тепловом равновесии, не коррелируют со своими соседями по | Рассмотрим молекулу, содержащую n соседних ядер с половинными спинами, расположенных в линию; они образуют биты строки. Эти спины изначально находятся в тепловом равновесии из-за их взаимодействия с окружающей средой. При комнатной температуре биты, находящиеся в тепловом равновесии, не коррелируют со своими соседями по строке; точнее говоря, корреляция очень мала, и ею можно пренебречь. Более того, в жидком состоянии можно пренебречь и взаимодействием между строками (между молекулами). Распределение вероятности одиночного спина в тепловом равновесии удобно записать в нотации «матрицы плотности» | ||
Строка 52: | Строка 52: | ||
Это состояние представляет собой тепловое распределение вероятностей, такое, что вероятность классического состояния «000...0» равна <math>P_{000...0} = (1 + \epsilon_0)^n / 2^n</math> и т. д. В реальности начальное смещение не одинаково на каждом кубите ''// | Это состояние представляет собой тепловое распределение вероятностей, такое, что вероятность классического состояния «000...0» равна <math>P_{000...0} = (1 + \epsilon_0)^n / 2^n</math> и т. д. В реальности начальное смещение не одинаково на каждом кубите ''//кроме того, индивидуальное обращение к каждому спину в процессе работы алгоритма требует несколько иного смещения для каждого из них//'', но пока различия между этими смещениями малы (например, все кубиты имеют одинаковое ядро), при обсуждении идеализированного сценария этими различиями можно пренебречь. | ||
== Основные результаты == | == Основные результаты == |
правка