Алгоритмическое охлаждение: различия между версиями

Перейти к навигации Перейти к поиску
Строка 102: Строка 102:




Мор и Вайнштейн обобщили этот анализ и обнаружили, что n - 1 вычислительных спинов и один сбрасывающий спин могут быть охлаждены (приблизительно) до смещений в соответствии с рядом Фибоначчи: {... 34, 21, 13, 8, 5, 3, 2, 1, 1}. Вычислительный спин, наиболее удаленный от сбрасывающего спина, может быть охлажден до соответствующего числа Фибоначчи Fn. Это приближение справедливо до тех пор, пока наибольший член, кратный e, все еще намного меньше 1. Затем Шульман предложил «алгоритм сопряжения партнеров» (PPA) и доказал оптимальность PPA среди всех ''классических и квантовых'' алгоритмов. Эти два алгоритма, Фибоначчи-охлаждение и PPA, стали основной для двух совместных работ [11, 12], где также были получены верхние и нижние границы для алгоритмического охлаждения. Алгоритм сопряжения партнеров. определяется следующим образом. Повторяйте эти два шага, пока охлаждение не будет достаточно близким к пределу: (а) RESET – применяется к сбрасывающему спину в системе, содержащей n - 1 вычислительных спинов и один (LSB) сбрасывающий. (b) SORT – перестановка, сортирующая 2n диагональных элементов матрицы плотности по убыванию, так что спин MSB становится самым холодным. В работе [12] доказаны две важные теоремы: 1. Нижняя граница когда e2" 2> 1 (а именно, для достаточно длинных молекул), теорема 3 из [ ] обещает, что может быть извлечено n - log(l/e) холодных кубитов. Этот случай актуален для масштабируемых квантовых вычислений на базе ЯМР. 2. Верхняя граница: в разделе 4.2 работы [12] доказывается следующая теорема: Ни один алгоритмический метод охлаждения не может увеличить вероятность любого базисного состояния выше min{2~" e2"€; 1g, если начальная конфигурация – полностью смешанное состояние (то же самое верно, если начальное состояние – тепловое состояние).
Мор и Вайнштейн обобщили этот анализ и обнаружили, что n - 1 вычислительных спинов и один сбрасывающий спин могут быть охлаждены (приблизительно) до смещений в соответствии с рядом Фибоначчи: {... 34, 21, 13, 8, 5, 3, 2, 1, 1}. Вычислительный спин, наиболее удаленный от сбрасывающего спина, может быть охлажден до соответствующего числа Фибоначчи Fn. Это приближение справедливо до тех пор, пока наибольший член, кратный e, все еще намного меньше 1. Затем Шульман предложил «алгоритм сопряжения партнеров» (PPA) и доказал оптимальность PPA среди всех ''классических и квантовых'' алгоритмов. Эти два алгоритма, Фибоначчи-охлаждение и PPA, стали основной для двух совместных работ [11, 12], где также были получены верхние и нижние границы для алгоритмического охлаждения. Алгоритм сопряжения партнеров. определяется следующим образом. Повторяйте эти два шага, пока охлаждение не будет достаточно близким к пределу: (а) RESET – применяется к сбрасывающему спину в системе, содержащей n - 1 вычислительных спинов и один (LSB) сбрасывающий. (b) SORT – перестановка, сортирующая <math>2^n</math> диагональных элементов матрицы плотности по убыванию, так что спин MSB становится самым холодным. В работе [12] доказаны две важные теоремы: 1. Нижняя граница: когда <math>\epsilon^2 \gg 1</math> (а именно, для достаточно длинных молекул), теорема 3 из [12] обещает, что может быть извлечено <math>n - log(1/ \epsilon)</math> холодных кубитов. Этот случай актуален для масштабируемых квантовых вычислений на базе ЯМР. 2. Верхняя граница: в разделе 4.2 работы [12] доказывается следующая теорема: Ни один алгоритмический метод охлаждения не может увеличить вероятность любого базисного состояния выше <math>min \{ 2^{-n} e^{2^n \epsilon}, 1 \}</math>, если начальная конфигурация – полностью смешанное состояние (то же самое верно, если начальное состояние – тепловое состояние).




Впоследствии Элиас, Фернандес, Мор и Вайнштейн [6] более тщательно проанализировали случай n < 15 (при комнатной температуре), когда самый холодный спин (на всех стадиях) все еще имеет поляризационное смещение намного меньше 1. Этот случай наиболее актуален для применения в ЯМР-спектроскопии. Они обобщили принцип Фибоначчи-охлаждения на алгоритмы, дающие более сложные ряды Фибоначчи, такие как трибоначчи (также известный как 3-кратный ряд Фибоначчи), {... 81, 44, 24, 13, 7, 4, 2, 1, 1} и т. д. Конечный предел этих многочленных рядов Фибоначчи имеет место, когда каждый член ряда равен сумме всех предыдущих. Полученный ряд в точности является экспоненциальным {... 128, 64, 32,16, 8, 4, 2, 1, 1}, так что самый холодный спин охлаждается в 2n~2 раз. Более того, анализ упомянутого выше верхнего предела (раздел 4.2 в [ ]), показывает, что ни один спин не может быть охлажден больше, чем в 2""1 раз; см. следствие 1 в [6].
Впоследствии Элиас, Фернандес, Мор и Вайнштейн [6] более тщательно проанализировали случай n < 15 (при комнатной температуре), когда самый холодный спин (на всех стадиях) все еще имеет поляризационное смещение намного меньше 1. Этот случай наиболее актуален для применения в ЯМР-спектроскопии. Они обобщили принцип Фибоначчи-охлаждения на алгоритмы, дающие более сложные ряды Фибоначчи, такие как трибоначчи (также известный как 3-кратный ряд Фибоначчи), {... 81, 44, 24, 13, 7, 4, 2, 1, 1} и т. д. Конечный предел этих многочленных рядов Фибоначчи имеет место, когда каждый член ряда равен сумме всех предыдущих. Полученный ряд в точности является экспоненциальным {... 128, 64, 32,16, 8, 4, 2, 1, 1}, так что самый холодный спин охлаждается в <math>2^{n - 2}</math> раз. Более того, анализ упомянутого выше верхнего предела (раздел 4.2 в [12]), показывает, что ни один спин не может быть охлажден больше, чем в <math>2^{n - 1}</math> раз; см. следствие 1 в [6].


== Применение ==
== Применение ==
4501

правка

Навигация