4501
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 53: | Строка 53: | ||
'''Тепловые двигатели молекулярного масштаба''' | '''Тепловые двигатели молекулярного масштаба''' | ||
Шульман и Вазирани [ ] определили важность сжатия данных без потерь на месте и битов с низкой энтропией, создаваемых в этом процессе: физические двухуровневые системы (например, ядра с половинными спинами) могут быть аналогичным образом охлаждены алгоритмами сжатия данных. Авторы проанализировали охлаждение такой системы с помощью различных инструментов сжатия данных. Сжатие без потерь n-битной двоичной строки, распределенной в соответствии с тепловым равновесным распределением, уравнение (2), легко анализируется с помощью теоретико-информационных инструментов: в идеальной схеме сжатия (не обязательно реализуемой) при достаточно большом n вся случайность – и, следовательно, вся энтропия – битовой строки переносится в n - m бит; оставшиеся m бит, таким образом, с чрезвычайно высокой вероятностью остаются в известном детерминированном состоянии, скажем, в состоянии строки «000...0». Энтропия H всей системы равна H(system) = nH(single - bit) = nH(1/2 + | Шульман и Вазирани [13] определили важность сжатия данных без потерь на месте и битов с низкой энтропией, создаваемых в этом процессе: физические двухуровневые системы (например, ядра с половинными спинами) могут быть аналогичным образом охлаждены алгоритмами сжатия данных. Авторы проанализировали охлаждение такой системы с помощью различных инструментов сжатия данных. Сжатие без потерь n-битной двоичной строки, распределенной в соответствии с тепловым равновесным распределением, уравнение (2), легко анализируется с помощью теоретико-информационных инструментов: в идеальной схеме сжатия (не обязательно реализуемой) при достаточно большом n вся случайность – и, следовательно, вся энтропия – битовой строки переносится в n - m бит; оставшиеся m бит, таким образом, с чрезвычайно высокой вероятностью остаются в известном детерминированном состоянии, скажем, в состоянии строки «000...0». Энтропия H всей системы равна <math>H(system) = nH(single-bit) = nH(1/2 + \epsilon/2)</math>. Любая схема сжатия не может уменьшить эту энтропию, поэтому энтропийный предел Шеннона для кодирования источника дает <math>m \le n[1 - H(1/2 + \epsilon/2)]</math>. Простой расчет по высшему порядку показывает, что m ограничено (приблизительно) <math>\frac{\epsilon^2}{2 \; ln \; 2} n</math> для малых значений начального смещения <math>\epsilon</math>. Таким образом, при типичном <math>e \backsim 10^{-5}</math> для охлаждения одного спина до околонулевой температуры требуются молекулы, содержащие порядка <math>10^{10}</math> спинов. | ||
Традиционные методы квантовых вычислений для ЯМР основаны на немасштабируемых схемах инициализации состояний [5,9] (например, подход «псевдочистого состояния»), в которых отношение сигнал/шум падает экспоненциально с увеличением числа спинов n. Следовательно, эти методы считаются непригодными для будущих квантовых ЯМР-компьютеров. Шульман и Вазирани [13] первыми применили инструменты теории информации для решения задачи масштабирования; они представили схему сжатия, в которой число охлажденных спинов хорошо масштабируется (а именно, как константа, кратная n). Авторы также продемонстрировали схему, приближающуюся к энтропийному пределу Шеннона для очень больших n. Они представили подробный анализ трех алгоритмов охлаждения, каждый из которых полезен для различных режимов значений | Традиционные методы квантовых вычислений для ЯМР основаны на немасштабируемых схемах инициализации состояний [5, 9] (например, подход «псевдочистого состояния»), в которых отношение сигнал/шум падает экспоненциально с увеличением числа спинов n. Следовательно, эти методы считаются непригодными для будущих квантовых ЯМР-компьютеров. Шульман и Вазирани [13] первыми применили инструменты теории информации для решения задачи масштабирования; они представили схему сжатия, в которой число охлажденных спинов хорошо масштабируется (а именно, как константа, кратная n). Авторы также продемонстрировали схему, приближающуюся к энтропийному пределу Шеннона для очень больших n. Они представили подробный анализ трех алгоритмов охлаждения, каждый из которых полезен для различных режимов значений <math>\epsilon</math>. | ||
Некоторые идеи Шульмана и Вазирани уже были исследованы несколькими годами ранее | Некоторые идеи Шульмана и Вазирани уже были исследованы несколькими годами ранее Соренсеном [14] – физхимиком, анализировавшим эффективное охлаждение спинов. Он рассмотрел энтропию нескольких спиновых систем и ограничения, накладываемые на охлаждение этих систем переносом поляризации и более общими манипуляциями с ней. Кроме того, он рассмотрел процессы охлаждения спинов, в которых использовались только унитарные операции, в которых унитарные матрицы применяются к матрицам плотности; такие операции реализуемы, по крайней мере, с концептуальной точки зрения. С0ренсен вывел более строгое ограничение на унитарное охлаждение, которое сегодня носит его имя. Однако, в отличие от Шульмана и Вазирани, он не делал выводов о связи со сжатием данных и не отстаивал алгоритмы сжатия. | ||
правка