4511
правок
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 146: | Строка 146: | ||
Число возможных состояний (после применения процедуры расширения интервала) арифметического кодера, использующего целочисленный интервал [0, N), равно <math>3N^2/16</math>. Очевидным способом уменьшения числа состояний | Число возможных состояний (после применения процедуры расширения интервала) арифметического кодера, использующего целочисленный интервал [0, N), равно <math>3N^2/16</math>. Очевидным способом уменьшения числа состояний до такого, при котором использование таблиц поиска становится практичным, является уменьшение значения N. Двоичное квазиарифметическое кодирование приводит к незначительному увеличению длины кода по сравнению с чисто арифметическим кодированием. | ||
'''Теорема 2. В квазиарифметическом кодере, основанном на полном интервале [0, N), использующем корректные оценки вероятностей и исключающем очень большие и очень малые вероятности, количество бит на входное событие, при котором средняя длина кода, полученного квазиарифметическим кодером, превышает длину кода, полученного точным арифметическим кодером, составляет не более''' <math>\frac{4}{ln \; 2} \bigg( log_2 \; \frac{2}{e \; ln \; 2} \bigg) \frac{1}{N} + O \bigg( \frac{1}{N^2} \bigg) \approx \frac{0,497}{N} + O \bigg( \frac{1}{N^2} \bigg),</math> | '''Теорема 2. В квазиарифметическом кодере, основанном на полном интервале [0, N), использующем корректные оценки вероятностей и исключающем очень большие и очень малые вероятности, количество бит на входное событие, при котором средняя длина кода, полученного квазиарифметическим кодером, превышает длину кода, полученного точным арифметическим кодером, составляет не более''' <math>\frac{4}{ln \; 2} \bigg( log_2 \; \frac{2}{e \; ln \; 2} \bigg) \frac{1}{N} + O \bigg( \frac{1}{N^2} \bigg) \approx \frac{0,497}{N} + O \bigg( \frac{1}{N^2} \bigg),</math> | ||
'''а доля, на которую средняя длина кода, полученная квазиарифметическим кодером, превышает длину кода, полученную точным арифметическим кодером, не | '''а доля, на которую средняя длина кода, полученная квазиарифметическим кодером, превышает длину кода, полученную точным арифметическим кодером, составляет не более''' <math>\bigg( log_2 \; \frac{2}{e \; ln \; 2} \bigg) \frac{1}{log_2 \; N} + O \bigg( \frac{1}{(log_2 \; N)^2} \bigg) \approx \frac{0,0861}{log_2 \; N} + O \bigg( \frac{1}{(log_2 \; N)^2} \bigg).</math> | ||
правок