Арифметическое кодирование для сжатия данных: различия между версиями

Перейти к навигации Перейти к поиску
м
Строка 111: Строка 111:




Кроме того, существуют две стратегии оценки вероятности. Первая заключается в индивидуальной оценке вероятности каждого события на основе частоты его встречаемости в исходной последовательности. Вторая представляет собой оценку вероятностей в совокупности, предполагая распределение вероятностей определенной формы и оценивая параметры распределения прямо или косвенно. При прямом оценивании можно по данным получить оценку параметра (например, дисперсии); при косвенном 5 ] можно начать с небольшого числа возможных распределений и вычислить длину кода, который будет получен при каждом из них, а затем выбирается распределение с наименьшей длиной кода. Этот метод является максимально общим и может быть использован даже для распределений из разных семейств, не имеющих общих параметров.
Кроме того, существуют две стратегии оценки вероятности. Первая заключается в индивидуальной оценке вероятности каждого события на основе частоты его встречаемости во входной последовательности. Вторая представляет собой оценку вероятностей в совокупности, предполагая распределение вероятностей определенной формы и оценивая параметры распределения прямо или косвенно. При прямом оценивании можно по данным получить оценку параметра (например, дисперсии); при косвенном [5] можно начать с небольшого числа возможных распределений и вычислить длину кода, который будет получен при каждом из них, а затем выбрать распределение с наименьшей длиной кода. Этот метод является максимально общим и может быть использован даже для распределений из разных семейств, не имеющих общих параметров.




Строка 117: Строка 117:




'''Теорема 1. Для всех входных файлов кодовая длина <math>L_A</math> адаптивного кода с начальными 1-весами равна кодовой длине <math>L_{SD}</math> полуадаптивного декрементирующего кода плюс кодовая длина <math>L_M</math> входной модели, кодируемой в предположении, что все распределения символов равновероятны. Эта кодовая длина меньше <math>L_S = mH_0 + L_M</math> – кодовой длины статического кода с той же входной моделью. Иными словами, <math>L_A = L_{SD} + L_M < mH_0 + L_M = L_S</math>.'''
'''Теорема 1. Для всех входных файлов кодовая длина <math>L_A</math> адаптивного кода с начальными 1-весами равна кодовой длине <math>L_{SD}</math> полуадаптивного декрементного кода плюс кодовая длина <math>L_M</math> входной модели, кодируемой в предположении, что все распределения символов равновероятны. Эта кодовая длина меньше <math>L_S = mH_0 + L_M</math> – кодовой длины статического кода с той же входной моделью. Иными словами, <math>L_A = L_{SD} + L_M < mH_0 + L_M = L_S</math>.'''




4511

правок

Навигация