Быстрая минимальная триангуляция: различия между версиями

Перейти к навигации Перейти к поиску
м
нет описания правки
мНет описания правки
мНет описания правки
Строка 9: Строка 9:




Минимальные триангуляции были впервые описаны в середине семидесятых, и с тех пор было предложено множество алгоритмов. Полный обзор алгоритмов и различные характеризации хордальных графов и минимальных триангуляций можно найти в работе Хеггернеса и коллег [5], посвященной минимальным триангуляциям. Алгоритмы минимальных триангуляций можно грубо разделить на алгоритмы, получающие триангуляцию посредством упорядочивания удалений, и алгоритмы, получающие ее при помощи разделителей вершин. Большинство этих алгоритмов имеют время исполнения <math>O(nm) \; </math>, что для плотных графов превращается в <math>O(n^3) \; </math>. Среди алгоритмов, использующих упорядочивание удалений, самым быстрым на данный момент является алгоритм Кратча и Спинрада с временем исполнения <math>O(n^{2,69}) \; </math> [8]. Из алгоритмов, использующих разделители вершин, самым быстрым является алгоритм Хеггернеса и коллег [5] с временем исполнения <math>o(n^{2,376}) \; </math>, [5]. подробнее описанный ниже. И алгоритм Кратча и Спинрада [8], и алгоритм Хеггернеса и коллег используют алгоритм матричного умножения Копперсмита и Винограда [3], который позволяет получить алгоритм с временем исполнения <math>o(n^3) \; </math>.
Минимальные триангуляции были впервые описаны в середине семидесятых, и с тех пор было предложено множество алгоритмов. Полный обзор алгоритмов и различные характеризации хордальных графов и минимальных триангуляций можно найти в работе Хеггернеса и коллег [5], посвященной минимальным триангуляциям. Алгоритмы минимальных триангуляций можно грубо разделить на алгоритмы, получающие триангуляцию посредством упорядочивания удалений, и алгоритмы, получающие ее при помощи разделителей вершин. Большинство этих алгоритмов имеют время выполнения <math>O(nm) \; </math>, что для плотных графов превращается в <math>O(n^3) \; </math>. Среди алгоритмов, использующих упорядочивание удалений, самым быстрым на данный момент является алгоритм Кратча и Спинрада с временем выполнения <math>O(n^{2,69}) \; </math> [8]. Из алгоритмов, использующих разделители вершин, самым быстрым является алгоритм Хеггернеса и коллег [5] с временем выполнения <math>o(n^{2,376}) \; </math>, [5]. подробнее описанный ниже. И алгоритм Кратча и Спинрада [8], и алгоритм Хеггернеса и коллег используют алгоритм матричного умножения Копперсмита и Винограда [3], который позволяет получить алгоритм с временем выполнения <math>o(n^3) \; </math>.




Строка 66: Строка 66:
Принимая во внимание результаты из [1] и [7], получаем следующий рекурсивный алгоритм минимальной триангуляции. Найти множество вершин A, являющееся либо минимальным разделителем, либо потенциально максимальной кликой. Дополнить G[A] до клики. Рекурсивным образом для каждой компоненты связности C из <math>G[V \mathcal{n} A] \; </math>, где <math>G[N[C]] \; </math> не является кликой, найти минимальную триангуляцию <math>G[N[C]] \; </math>. Важное свойство алгоритма заключается в том, что множество компонент связности <math>G[V \mathcal{n} A] \; </math> определяет независимые задачи минимальной триангуляции.
Принимая во внимание результаты из [1] и [7], получаем следующий рекурсивный алгоритм минимальной триангуляции. Найти множество вершин A, являющееся либо минимальным разделителем, либо потенциально максимальной кликой. Дополнить G[A] до клики. Рекурсивным образом для каждой компоненты связности C из <math>G[V \mathcal{n} A] \; </math>, где <math>G[N[C]] \; </math> не является кликой, найти минимальную триангуляцию <math>G[N[C]] \; </math>. Важное свойство алгоритма заключается в том, что множество компонент связности <math>G[V \mathcal{n} A] \; </math> определяет независимые задачи минимальной триангуляции.


Этот рекурсивный алгоритм определяет дерево, корнем которого является входной граф G, а каждая компонента связности <math>G[V \mathcal{n} A]</math> становится потомком корневой вершины, определяемой G. Этот процесс рекурсивно продолжается для каждой подзадачи, определяемой этими компонентами связности. Вершина H, являющаяся подзадачей алгоритма, находится на [[уровень|уровне]] i, если расстояние от H до корня дерева равно i. Заметим, что триангуляция всех подзадач одного и того же уровня может выполняться независимо. Пусть k – количество уровней. Если этот рекурсивный алгоритм может быть выполнен для каждого подграфа на каждом уровне за время <math>O(f(n)) \; </math>, тогда общее время исполнения составит <math>O(f(n) \cdot k) \; </math>.
Этот рекурсивный алгоритм определяет дерево, корнем которого является входной граф G, а каждая компонента связности <math>G[V \mathcal{n} A]</math> становится потомком корневой вершины, определяемой G. Этот процесс рекурсивно продолжается для каждой подзадачи, определяемой этими компонентами связности. Вершина H, являющаяся подзадачей алгоритма, находится на [[уровень|уровне]] i, если расстояние от H до корня дерева равно i. Заметим, что триангуляция всех подзадач одного и того же уровня может выполняться независимо. Пусть k – количество уровней. Если этот рекурсивный алгоритм может быть выполнен для каждого подграфа на каждом уровне за время <math>O(f(n)) \; </math>, тогда общее время выполнения составит <math>O(f(n) \cdot k) \; </math>.




Строка 121: Строка 121:




Несмотря на то, что все подзадачи на одном и том же уровне могут решаться независимо, у них могут быть общие вершины и ребра, но не антиребра (т.е. пары вершин, не являющиеся смежными). Поскольку процесс триангуляции включает в себя добавление ребер, число антиребер на каждом уровне снижается, и сумма числа антиребер для всех подзадач на одном и том же уровне не может превышать <math>n^2 \; </math>. Алгоритм разбиения на рис. 2 использует этот факт; он имеет время исполнения <math>O(n^2 - m) \; </math>, что в сумме для каждого уровня дает <math>O(n^2) \; </math>. Таким образом, каждый уровень алгоритма быстрой минимальной триангуляции, приведенного на рис. 1, может быть выполнен за время <math>O(n^2 + n^{ \alpha }) \; </math>, где <math>O(n^{ \alpha }) \; </math> – время, необходимое для вычисления <math>MM^T \; </math>. Алгоритм разбиения на рис. 2 фактически находит множество A, которое определяет множество независимых разделителей, такое, что ни одна подзадача не содержит более четырех пятых всех антиребер исходного графа. В результате количество уровней алгоритма быстрой минимальной триангуляции не превышает <math>log_{ \frac{4}{5} }(n^2) = 2 \; log_{ \frac{4}{5} }(n)</math>, чем достигается время исполнения <math>O(n^{ \alpha } log \; n)</math>.
Несмотря на то, что все подзадачи на одном и том же уровне могут решаться независимо, у них могут быть общие вершины и ребра, но не антиребра (т.е. пары вершин, не являющиеся смежными). Поскольку процесс триангуляции включает в себя добавление ребер, число антиребер на каждом уровне снижается, и сумма числа антиребер для всех подзадач на одном и том же уровне не может превышать <math>n^2 \; </math>. Алгоритм разбиения на рис. 2 использует этот факт; он имеет время выполнения <math>O(n^2 - m) \; </math>, что в сумме для каждого уровня дает <math>O(n^2) \; </math>. Таким образом, каждый уровень алгоритма быстрой минимальной триангуляции, приведенного на рис. 1, может быть выполнен за время <math>O(n^2 + n^{ \alpha }) \; </math>, где <math>O(n^{ \alpha }) \; </math> – время, необходимое для вычисления <math>MM^T \; </math>. Алгоритм разбиения на рис. 2 фактически находит множество A, которое определяет множество независимых разделителей, такое, что ни одна подзадача не содержит более четырех пятых всех антиребер исходного графа. В результате количество уровней алгоритма быстрой минимальной триангуляции не превышает <math>log_{ \frac{4}{5} }(n^2) = 2 \; log_{ \frac{4}{5} }(n)</math>, чем достигается время выполнения <math>O(n^{ \alpha } log \; n)</math>.


== Применение ==
== Применение ==


Создание первых алгоритмов минимальной триангуляции было вызвано необходимостью найти подходящий порядок коэффициентов для метода Гаусса. Нахождение оптимального порядка эквивалентно решению задачи минимума триангуляции, являющейся задачей с недетерминированным полиномиальным временем исполнения. Поскольку любая задача минимума триангуляции является задачей минимальной триангуляции, а эту задачу можно решить за полиномиальное время, множество минимальных триангуляций может быть подходящим местом для поиска порядка коэффициентов.
Создание первых алгоритмов минимальной триангуляции было вызвано необходимостью найти подходящий порядок коэффициентов для метода Гаусса. Нахождение оптимального порядка эквивалентно решению задачи минимума триангуляции, являющейся задачей с недетерминированным полиномиальным временем выполнения. Поскольку любая задача минимума триангуляции является задачей минимальной триангуляции, а эту задачу можно решить за полиномиальное время, множество минимальных триангуляций может быть подходящим местом для поиска порядка коэффициентов.




Возможно, из-за связи с первоначальной задачей первые алгоритмы минимальной триангуляции были основаны на упорядочении и давали в результате порядок, называемый минимальным порядком удаления. С тех пор задача нахождения минимальной триангуляции получила широкое распространение; были опубликованы несколько новых вариантов применения и характеризаций, касающихся свойств разделителей вершин. В числе таких новых вариантов применения – нахождение древесной ширины графа и реконструкция эволюционной истории при помощи филогенетических деревьев [6]. Новые характеризации минимальной триангуляции на основе разделителей вершин повысили уровень знаний о минимальных триангуляциях [1,7,9]. Одним из результатов, основанных на этих характеризациях, является алгоритм вычисления древесной ширины графа за полиномиальное время в случае, когда количество минимальных разделителей полиномиально ограничено [2]. Другим вариантом применения являются более быстрые точные алгоритмы вычисления древесной ширины графа с экспоненциальным временем исполнения [4].
Возможно, из-за связи с первоначальной задачей первые алгоритмы минимальной триангуляции были основаны на упорядочении и давали в результате порядок, называемый минимальным порядком удаления. С тех пор задача нахождения минимальной триангуляции получила широкое распространение; были опубликованы несколько новых вариантов применения и характеризаций, касающихся свойств разделителей вершин. В числе таких новых вариантов применения – нахождение древесной ширины графа и реконструкция эволюционной истории при помощи филогенетических деревьев [6]. Новые характеризации минимальной триангуляции на основе разделителей вершин повысили уровень знаний о минимальных триангуляциях [1,7,9]. Одним из результатов, основанных на этих характеризациях, является алгоритм вычисления древесной ширины графа за полиномиальное время в случае, когда количество минимальных разделителей полиномиально ограничено [2]. Другим вариантом применения являются более быстрые точные алгоритмы вычисления древесной ширины графа с экспоненциальным временем выполнения [4].


== Открытые вопросы ==
== Открытые вопросы ==
4551

правка

Навигация