Кластеризация на основе эффективности: различия между версиями

Перейти к навигации Перейти к поиску
м
нет описания правки
мНет описания правки
Строка 35: Строка 35:




В одной из первых работ по этой теме Лоулер и коллеги [2] предложили алгоритм с полиномиальным временем исполнения для задачи кластеризации схемы в специальном случае, когда все вентильные задержки равны нулю (т.е. <math>\delta (v) = 0 \;</math> для всех v).
В одной из первых работ по этой теме Лоулер и коллеги [2] предложили алгоритм с полиномиальным временем выполнения для задачи кластеризации схемы в специальном случае, когда все вентильные задержки равны нулю (т.е. <math>\delta (v) = 0 \;</math> для всех v).


== Основные результаты ==
== Основные результаты ==
Раджамаран и Вонг [5] предложили оптимальный алгоритм с полиномиальным временем исполнения для задачи кластеризации схемы с применением обобщенной модели задержки.
Раджамаран и Вонг [5] предложили оптимальный алгоритм с полиномиальным временем выполнения для задачи кластеризации схемы с применением обобщенной модели задержки.




Строка 53: Строка 53:


== Экспериментальные результаты ==
== Экспериментальные результаты ==
Раджамаран и Вонг представили на Международном симпозиуме по схемам и системам результаты экспериментов на пяти схемах с количеством вершин от 196 до 913, а также показатели максимальных задержек кластеризации и времени исполнения алгоритма на рабочей станции Sun Sparc.
Раджамаран и Вонг представили на Международном симпозиуме по схемам и системам результаты экспериментов на пяти схемах с количеством вершин от 196 до 913, а также показатели максимальных задержек кластеризации и времени выполнения алгоритма на рабочей станции Sun Sparc.


== См. также ==
== См. также ==
4551

правка

Навигация