4551
правка
Irina (обсуждение | вклад) мНет описания правки |
Irina (обсуждение | вклад) мНет описания правки |
||
Строка 11: | Строка 11: | ||
Задача коммивояжера представляет собой NP-полную задачу. Это означает, что для ее решения не существует алгоритма с полиномиальным временем выполнения, если только не окажется верным P = NP. Одним из способов разрешения этой проблемы являются алгоритмы | Задача коммивояжера представляет собой NP-полную задачу. Это означает, что для ее решения не существует алгоритма с полиномиальным временем выполнения, если только не окажется верным P = NP. Одним из способов разрешения этой проблемы являются аппроксимационные алгоритмы. [[Аппроксимационный алгоритм]] задачи TSP с полиномиальным временем выполнения называется алгоритмом <math>\alpha \;</math>-аппроксимации, если обход H, полученный с его помощью, удовлетворяет неравенству <math>w(H) \le \alpha \cdot OPT(G) \;</math>. Здесь OPT(G) – вес обхода с минимальным весом для графа G. Если граф G понятен из контекста, можно записывать его просто в виде «OPT». Алгоритм <math>\alpha \;</math>-аппроксимации всегда дает в итоге допустимое решение, целевое значение которого не более чем в <math>\alpha \;</math> раз отличается от оптимального значения. Коэффициент <math>\alpha \;</math> также называется коэффициентом аппроксимации или гарантией эффективности. <math>\alpha \;</math> не обязательно должен быть константой; он может быть функцией, зависящей от размера входного экземпляра или количества вершин n. | ||
Строка 19: | Строка 19: | ||
Соответствующая задача носит название метрической задачи коммивояжера (Metric TSP). Для этой задачи существуют алгоритмы | Соответствующая задача носит название метрической задачи коммивояжера (Metric TSP). Для этой задачи существуют аппроксимационные алгоритмы с константным коэффициентом. Отметим, что для решения метрической задачи коммивояжера достаточно найти обход, который посещает любую вершину ''не менее'' одного раза. При наличии такого обхода мы сможем найти гамильтонов обход с меньшим или равным весом, просто пропуская любую вершину, которую мы уже посещали. Согласно неравенству треугольника, вес нового обхода не может возрастать. | ||
Строка 95: | Строка 95: | ||
Анализ алгоритма 2 несложен. Примером может служить метрическое пополнение графа, изображенного на рис. 1. Его единственное минимальное остовное дерево состоит из всех сплошных ребер. Оно содержит только две вершины с нечетными степенями. Ребро между этими двумя вершинами имеет вес <math>(1 + \epsilon)(n + 1) \;</math>. Сокращения путей не требуется; вес обхода, вычисленного алгоритмом, равен <math>\approx 3 n \;</math>. Оптимальный обход состоит из всех пунктирных ребер, а также самого левого и самого правого сплошных ребер. Вес этого обхода составляет <math>(2n - 1)(1 + \epsilon) + 2 \approx 2n \;</math>. | Анализ алгоритма 2 несложен. Примером может служить метрическое пополнение графа, изображенного на рис. 1. Его единственное минимальное остовное дерево состоит из всех сплошных ребер. Оно содержит только две вершины с нечетными степенями. Ребро между этими двумя вершинами имеет вес <math>(1 + \epsilon)(n + 1) \;</math>. Сокращения путей не требуется; вес обхода, вычисленного алгоритмом, равен <math>\approx 3 n \;</math>. Оптимальный обход состоит из всех пунктирных ребер, а также самого левого и самого правого сплошных ребер. Вес этого обхода составляет <math>(2n - 1)(1 + \epsilon) + 2 \approx 2n \;</math>. | ||
Вопрос о существовании алгоритма | Вопрос о существовании аппроксимационного алгоритма с лучшей гарантией эффективности является главным нерешенным вопросом в теории аппроксимационных алгоритмов. | ||
правка