4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 216: | Строка 216: | ||
'''Теорема 10 [35]. Зафиксируем функцию социального выбора <math>f: V \to A</math>, где V – выпуклая, а A – конечная. Тогда существуют цены p такие, что M = (f, p) | '''Теорема 10 [35]. Зафиксируем функцию социального выбора <math>f: V \to A</math>, где область V – выпуклая, а A – конечная. Тогда существуют цены p такие, что механизм M = (f, p) правдив тогда и только тогда, когда f слабо монотонна. | ||
Строка 222: | Строка 222: | ||
Таким образом, разработчик должен стремиться к слабо монотонным алгоритмам, и ему не нужно беспокоиться о фактических ценах. Но насколько это сложно? Для одномерных областей оказывается, что W-MON оставляет разработчику алгоритмов достаточно гибкие возможности. Рассмотрим, например, случай, когда каждая альтернатива имеет | Таким образом, разработчик должен стремиться к слабо монотонным алгоритмам, и ему не нужно беспокоиться о фактических ценах. Но насколько это сложно? Для одномерных областей оказывается, что W-MON оставляет разработчику алгоритмов достаточно гибкие возможности. Рассмотрим, например, случай, когда каждая альтернатива имеет либо стоимость 0 (игрок «проигрывает»), либо некоторое значение <math>v_i \in \mathfrak{R}</math> (игрок «выигрывает» и получает стоимость <math>v_i</math>). В таком случае нетрудно показать, что W-MON сводится к следующему условию монотонности: если игрок выигрывает при <math>v_i</math> и увеличивает свою стоимость до <math>v'_i > v_i</math> (при этом значение <math>v_{-i}</math>, остается фиксированным), то он должен выиграть и при v0i. Более того, в этом случае цена выигрывающего игрока должна быть установлена на инфимум по всем выигрышным ценностям. | ||
правка