1294
правки
Irina (обсуждение | вклад) м (→Применение) |
KVN (обсуждение | вклад) |
||
(не показаны 3 промежуточные версии 1 участника) | |||
Строка 3: | Строка 3: | ||
== Постановка задачи == | == Постановка задачи == | ||
Пусть A, B, C – три заданные матрицы размерности n x n над полем, где C – матричное произведение AB. Прямолинейный метод проверки того, что С = AB, заключается в перемножении матриц A и B и поэлементном сравнении полученного результата с C. Это занимает время <math>O(n^{\omega})</math>, где <math>\omega</math> – | Пусть A, B, C – три заданные матрицы размерности n x n над полем, где C – матричное произведение AB. Прямолинейный метод проверки того, что С = AB, заключается в перемножении матриц A и B и поэлементном сравнении полученного результата с C. Это занимает время <math>O(n^{\omega})</math>, где <math>\omega</math> – «степень матричного умножения». Из определения операции умножения матриц очевидным образом следует, что <math>2 \le \omega \le 3</math>. Наилучшая известная нижняя граница <math>\omega</math> составляет 2,376 [4]. | ||
Строка 35: | Строка 35: | ||
== Основные результаты == | == Основные результаты == | ||
Амбайнис, Бурман, Хойер, Карпински и Курур [2] впервые изучили задачу проверки матричного произведения в квантовомеханической формулировке. Рекурсивно применяя алгоритм поиска Гровера [6], они представили алгоритм с временем выполнения <math>O(n^{7/4})</math>. Бурман и Шпалек улучшили это время, адаптировав алгоритмы поиска, основанные на квантовом блуждании, которые были | Амбайнис, Бурман, Хойер, Карпински и Курур [2] впервые изучили задачу проверки матричного произведения в квантовомеханической формулировке. Рекурсивно применяя алгоритм поиска Гровера [6], они представили алгоритм с временем выполнения <math>O(n^{7/4})</math>. Бурман и Шпалек улучшили это время, адаптировав алгоритмы поиска, основанные на квантовом блуждании, которые были незадолго до того разработаны Амбайнисом [1] и Шегеди [11]. | ||
Строка 44: | Строка 44: | ||
Бурман и Шпалек излагают свои результаты в терминах сложности «черного ящика» или | Бурман и Шпалек излагают свои результаты в терминах сложности «черного ящика» или «сложности в запросах», где элементы входных матриц A, B, C предоставляются оракулом. В качестве меры сложности здесь используется количество вызовов оракула (запросов). Сложность в запросах их квантового алгоритма совпадает с временем работы в вышеприведенной теореме. Они также вывели нижнюю границу сложности в запросах для этой задачи. | ||
Строка 56: | Строка 56: | ||
== Применение == | == Применение == | ||
Используя бинарный поиск вместе с алгоритмами из предыдущего раздела, можно найти | Используя бинарный поиск вместе с алгоритмами из предыдущего раздела, можно найти положение неправильного элемента в матрице C (предположительно являющейся произведением матриц A и B) и затем исправить его. Бурман и Шпалек применяют этот подход в итеративном режиме для получения алгоритма умножения матриц, начиная с предположения C = 0. Когда произведение AB является разреженной матрицей, этот метод позволяет получить квантовую схему умножения матриц, которая для некоторых параметров работает быстрее, чем известные классические схемы. | ||
'''Теорема 3. Для любых матриц A и B размера n x n | '''Теорема 3. Для любых матриц A и B размера n x n над целочисленной областью матричное произведение C = AB может быть вычислено квантовым алгоритмом с полиномиально малой вероятностью ошибки за ожидаемое время''' | ||
<math>O(1) \cdot | <math>O(1) \cdot | ||
Строка 110: | Строка 110: | ||
11. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of the 45th IEEE Symposium on Foundations of Computer Science, pp. 32-41, Rome, Italy, 17-19 October 2004 (2004) | 11. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of the 45th IEEE Symposium on Foundations of Computer Science, pp. 32-41, Rome, Italy, 17-19 October 2004 (2004) | ||
[[Категория: Совместное определение связанных терминов]] |