4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) Нет описания правки |
||
Строка 12: | Строка 12: | ||
Бурман и | Бурман и Шпалек рассматривали сложность проверки матричных произведений на квантовом компьютере. | ||
Строка 41: | Строка 41: | ||
Теорема 1. Рассмотрим задачу 1. Существует квантовый алгоритм, который всегда возвращает значение EQUAL, если C = AB, возвращает NOT EQUAL с вероятностью не менее 2/3, если С | '''Теорема 1. Рассмотрим задачу 1. Существует квантовый алгоритм, который всегда возвращает значение EQUAL, если C = AB, возвращает NOT EQUAL с вероятностью не менее 2/3, если С <math>\ne</math> AB, и имеет наихудшее время выполнения <math>O(n^{5/3})</math>, ожидаемое время выполнения <math>O(n^{2/3}/q(W)^{1/3})</math> и пространственную сложность <math>O(n^{5/3})</math>.''' | ||
Бурман и | Бурман и Шпалек излагают свои результаты в терминах сложности «черного ящика» или «числа запросов», где элементы входных матриц A, B, C предоставляются оракулом. В качестве меры сложности здесь является количество вызовов оракула (запросов). Сложность в запросах их квантового алгоритма совпадает с временем работы в вышеприведенной теореме. Они также вывели нижнюю границу сложности в запросах для этой задачи. | ||
Строка 54: | Строка 54: | ||
== Применение == | == Применение == | ||
Используя бинарный поиск вместе с алгоритмами из предыдущего раздела, можно найти и затем исправить положение неправильного элемента в матрице C (предположительно являющейся произведением матриц A и B). Бурман и | Используя бинарный поиск вместе с алгоритмами из предыдущего раздела, можно найти и затем исправить положение неправильного элемента в матрице C (предположительно являющейся произведением матриц A и B). Бурман и Шпалек применяют этот подход в итеративном режиме для получения алгоритма умножения матриц, начиная с предположения C = 0. Когда произведение AB является разреженной матрицей, этот метод позволяет получить квантовую схему умножения матриц, которая для некоторых параметров работает быстрее, чем известные классические схемы. | ||
правка