Квантование цепей Маркова: различия между версиями

Перейти к навигации Перейти к поиску
м
Строка 94: Строка 94:




'''Теорема 4 [18]. Пусть P – произвольная цепь Маркова на конечном пространстве состояний S, и пусть <math>cos \; \theta_1 \ge ... \ge cos \; \theta_l</math> – сингулярные значения D(P), лежащие в открытом интервале (0, 1), с соответствующими парами сингулярных векторов <math>v_j, w_j</math> для <math>1 \le j \le l</math>. Тогда нетривиальные собственные значения <math>W_P</math> (исключая 1 и -1) и соответствующие им собственные векторы имеют вид <math>e^{- 2i \theta_j}, R_1 w_j - e^{-i \theta_j} R_2 v_j; e^{2i \theta_j}, R_j w_j - e^{i \theta_j} R_2 v_j</math> для <math>1 \le j \le l</math>.'''
'''Теорема 4 [18]. Пусть P – произвольная цепь Маркова на конечном пространстве состояний S, и пусть <math>cos \; \theta_1 \ge ... \ge cos \; \theta_l</math> – сингулярные значения D(P), лежащие в открытом интервале (0, 1), с соответствующими парами сингулярных векторов <math>v_j, w_j</math> для <math>1 \le j \le l</math>. Тогда нетривиальные собственные значения <math>W_P</math> (исключая 1 и -1) и соответствующие им собственные векторы имеют вид <math>e^{- 2i \theta_j}, R_1 w_j - e^{-i \theta_j} R_2 v_j; e^{2i \theta_j}, R_1 w_j - e^{i \theta_j} R_2 v_j</math> для <math>1 \le j \le l</math>.'''




4551

правка

Навигация