4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 60: | Строка 60: | ||
\end{cases}</math> | \end{cases}</math> | ||
Эта граница достигается детерминированным алгоритмом запроса. Для любого пространства S структура данных может быть построена за время O(S) с помощью рандомизированного алгоритма, начиная с множества T, заданного в отсортированном порядке. Обновления выполняются за ожидаемое время <math>t_q + O(S/n)</math>. Таким образом, помимо нахождения элемента за один запрос | Эта граница достигается детерминированным алгоритмом запроса. Для любого пространства S структура данных может быть построена за время O(S) с помощью рандомизированного алгоритма, начиная с множества T, заданного в отсортированном порядке. Обновления выполняются за ожидаемое время <math>t_q + O(S/n)</math>. Таким образом, помимо нахождения элемента за один запрос о предке, обновления изменяют минимальную часть структуры данных. | ||
Нижние границы справедливы для мощной модели клеточного зонда и выполняются для рандомизированных алгоритмов. Когда <math>S \ge n^{1 + \varepsilon}</math>, оптимальный компромисс для коммуникативных игр совпадает с (1). Заметим, что случай <math>S = n^{1 + o(1)}</math> практически устраняется при сведении к коммуникационной сложности, поскольку сообщения Алисы зависят только от lg S. Таким образом, нет асимптотической разницы между <math>S = O(n)</math> и, скажем, <math>S = O(n^2)</math>. | Нижние границы справедливы для мощной модели клеточного зонда и выполняются даже для рандомизированных алгоритмов. Когда <math>S \ge n^{1 + \varepsilon}</math>, оптимальный компромисс для коммуникативных игр совпадает с (1). Заметим, что случай <math>S = n^{1 + o(1)}</math> практически устраняется при сведении к коммуникационной сложности, поскольку сообщения Алисы зависят только от lg S. Таким образом, нет асимптотической разницы между <math>S = O(n)</math> и, скажем, <math>S = O(n^2)</math>. | ||
правка