4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 75: | Строка 75: | ||
'''Теорема 3 (Крочмор, Ландау и Зив-Укельсон 2003 [6]; Мякинен, Наварро и Укконен [11]). Взвешенное расстояние редактирования между строками A' и B', закодированными длинами серий, может быть | '''Теорема 3 (Крочмор, Ландау и Зив-Укельсон, 2003 [6]; Мякинен, Наварро и Укконен [11]). Взвешенное расстояние редактирования между строками A' и B', закодированными длинами серий, может быть вычислено за время O(nm' + n'm).''' | ||
Для метрики аффинного штрафа за гэп Ким, Амир, Ландау и Парк [8] предложили алгоритм с временем выполнения O(nm' + n'm). Для эффективного вычисления сходства в этой метрике задача преобразуется в задачу поиска пути в ориентированном ациклическом графе, и используются некоторые свойства максимальных путей в этом графе. Нет необходимости строить граф в явном виде, так как авторы предложили новые рекуррентности, использующие свойства графа. | Для метрики аффинного штрафа за гэп Ким, Амир, Ландау и Парк [8] предложили алгоритм с временем выполнения O(nm' + n'm). Для эффективного вычисления сходства в этой метрике задача преобразуется в задачу поиска пути в ориентированном ациклическом графе, и при ее решении используются некоторые свойства максимальных путей в этом графе. Нет необходимости строить граф в явном виде, так как авторы предложили новые рекуррентности, использующие свойства графа. | ||
Строка 90: | Строка 90: | ||
'''Теорема 5 (Апостолико, Ландау и Скиена, 1999 [ ]). Самая длинная общая подпоследовательность строк A' и B', закодированных длинами серий, может быть вычислена за время O(n' m' log(n' + m')).''' | '''Теорема 5 (Апостолико, Ландау и Скиена, 1999 [1]). Самая длинная общая подпоследовательность строк A' и B', закодированных длинами серий, может быть вычислена за время O(n' m' log(n' + m')).''' | ||
Строка 108: | Строка 108: | ||
'''Теорема 7 (Крочмор, Ландау и Зив-Укельсон, 1993 [6]). Сходство между LZ-сжатыми строками X' и Y' в метрике аддитивного штрафа за гэп может быть вычислено за время O( | '''Теорема 7 (Крочмор, Ландау и Зив-Укельсон, 1993 [6]). Сходство между LZ-сжатыми строками X' и Y' в метрике аддитивного штрафа за гэп может быть вычислено за время <math>O(h n^2 / log \; n)</math>, где <math>h \le 1</math> – энтропия строк X и Y.''' | ||
== Применение == | == Применение == |
правка