4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 38: | Строка 38: | ||
(2) '''when''' <math>r = 1, 2, ..., \lfloor \frac{t}{k} \rfloor + 1</math> '''do''' % r: номер раунда % | (2) '''when''' <math>r = 1, 2, ..., \lfloor \frac{t}{k} \rfloor + 1</math> '''do''' % r: номер раунда % | ||
(3) '''begin_round''' | (3) '''begin_round''' | ||
(4) ''отправить'' <math>(est_i)</math> ''всем''; % включая сам < | (4) ''отправить'' <math>(est_i)</math> ''всем''; % включая сам <math>p_i</math> % | ||
(5) <math>est_i \gets min( \{ </math> значения <math>(est_i)</math>, полученные в ходе текущего раунда r}); | (5) <math>est_i \gets min( \{ </math> значения <math>(est_i)</math>, полученные в ходе текущего раунда r}); | ||
(6) '''end_round'''; | (6) '''end_round'''; | ||
Строка 47: | Строка 47: | ||
Отказы случаются, однако на практике они редки. Обозначим за f количество процессов, приводящих к аварийному завершению в данном прогоне алгоритма, 0 | Отказы случаются, однако на практике они редки. Обозначим за f количество процессов, приводящих к аварийному завершению в данном прогоне алгоритма, <math>0 \le f \le t</math>. Нас интересуют синхронные алгоритмы, которые завершаются максимум за <math>R_t</math> раундов в случае, когда на текущем прогоне аварийно завершаются t процессов, но которые позволяют безошибочным процессам выполнить вычисление за гораздо меньшее число раундов, если отказов мало. Такие алгоритмы называются ''алгоритмами с ранним принятием решений''. В [4] было показано, что при наличии f аварийных завершений процессов любой алгоритм согласования k множеств с ранним принятием решений имеет прогоны, на которых ни один процесс не принимает решение до раунда <math>R_f = min(\lfloor \frac{f}{k} \rfloor + 2, \lfloor \frac{t}{k} \rfloor + 1)</math>. Эта нижняя граница показывает неизбежно присущий им компромисс, устанавливающий связь между степенью координации k, максимальным количеством отказов процесса t, фактическим количеством отказов процесса f и наилучшей достижимой временной сложностью. Алгоритмы согласования k множеств с ранним принятием решений для синхронной модели можно найти в [4, 12]. | ||
'''Другие модели возникновения отказов''' | '''Другие модели возникновения отказов''' | ||
В модели с отказом из-за пропуска отправки процесс является сбойным, если он приводит к аварийному завершению или забывает отправить сообщения. В модели с отказом из-за любого пропуска процесс является сбойным, если он приводит к аварийному завершению или забывает отправить либо получить сообщения. (Отказ из-за пропуска отправки моделирует отказ выходного буфера, а отказ из-за пропуска получения – отказ входного буфера). Эти модели возникновения отказов были предложены в работе [ ]. | В модели с отказом из-за пропуска отправки процесс является сбойным, если он приводит к аварийному завершению или забывает отправить сообщения. В модели с отказом из-за любого пропуска процесс является сбойным, если он приводит к аварийному завершению или забывает отправить либо получить сообщения. (Отказ из-за пропуска отправки моделирует отказ выходного буфера, а отказ из-за пропуска получения – отказ входного буфера). Эти модели возникновения отказов были предложены в работе [11]. | ||
Понятие сильного завершения для задач о согласовании множеств было введено в [13]. На интуитивном уровне понятно, что это свойство требует, чтобы как можно больше процессов вычислили решение. Назовем хорошим процесс, который не приводит к аварийному завершению и не имеет отказов из-за пропуска. Алгоритм согласования множеств имеет сильное завершение, если при его выполнении все хорошие процессы обязательно вычисляют решение. (Только те процессы, которые приходят к аварийному завершению во время выполнения алгоритма или не получают достаточно сообщений, могут остаться без вычисленного решения). | Понятие ''сильного'' завершения для задач о согласовании множеств было введено в [13]. На интуитивном уровне понятно, что это свойство требует, чтобы как можно больше процессов вычислили решение. Назовем ''хорошим'' процесс, который не приводит к аварийному завершению и не имеет отказов из-за пропуска. Алгоритм согласования множеств имеет сильное завершение, если при его выполнении все хорошие процессы обязательно вычисляют решение. (Только те процессы, которые приходят к аварийному завершению во время выполнения алгоритма или не получают достаточно сообщений, могут остаться без вычисленного решения). | ||
Алгоритм согласования k множеств с ранним принятием решений для модели с отказом из-за любого пропуска был описан в [13]. Этот алгоритм, которому требуется t < n/2 времени, приводит хороший процесс к принятию решения и остановке максимум за | Алгоритм согласования k множеств с ранним принятием решений для модели с отказом из-за любого пропуска был описан в [13]. Этот алгоритм, которому требуется t < n/2 времени, приводит хороший процесс к принятию решения и остановке максимум за <math>R_f = min(\lfloor \frac{f}{k} \rfloor + 2, \lfloor \frac{t}{k} \rfloor + 1)</math> раундов. При этом процесс, который не является хорошим, выполняется не более <math>R_f(not_ good) = min(\lceil \frac{f}{k} \rceil + 2, \lceil \frac{t}{k} \rceil + 1)</math> раундов. | ||
Поскольку | Поскольку <math>R_f</math> является нижней границей для числа раундов в модели отказов с аварийным завершением, предыдущий алгоритм показывает, что это значение также является нижней границей для вычисления решения безошибочными процессами в более строгой модели с отказом из-за любого пропуска. Доказательство того, что <math>R_f(not_ good)</math> представляет собой верхнюю границу числа раундов, которые должен выполнить процесс, не являющийся хорошим, пока не найдено. | ||
В [ ] было показано, что для заданной степени координации k,t< kk+1 n является верхней границей числа отказов процессов в случае, когда требуется решить задачу о согласовании k наборов в синхронной системе, подверженной отказам из-за любого пропуска. Алгоритм согласования k множеств, реализующий эту границу, был описан в работе [ ]. Этот алгоритм требует, чтобы процессы выполнили R = t + 2 - k раундов перед вычислением решения. Доказательство (или опровержение) того, что R является нижней границей, когда t < k+1k n, по-прежнему является открытым вопросом. Еще одной нерешенной задачей является алгоритм согласования k множеств с ранним принятием решений для t < -^ n и k > 1. | В [13] было показано, что для заданной степени координации k,t< kk+1 n является верхней границей числа отказов процессов в случае, когда требуется решить задачу о согласовании k наборов в синхронной системе, подверженной отказам из-за любого пропуска. Алгоритм согласования k множеств, реализующий эту границу, был описан в работе [ ]. Этот алгоритм требует, чтобы процессы выполнили R = t + 2 - k раундов перед вычислением решения. Доказательство (или опровержение) того, что R является нижней границей, когда t < k+1k n, по-прежнему является открытым вопросом. Еще одной нерешенной задачей является алгоритм согласования k множеств с ранним принятием решений для t < -^ n и k > 1. | ||
правка