Сложность биматричного равновесия Нэша: различия между версиями

Перейти к навигации Перейти к поиску
м
нет описания правки
мНет описания правки
мНет описания правки
Строка 22: Строка 22:


== Основные результаты ==
== Основные результаты ==
Бинарное отношение <math>R \subset \{ 0, 1 \}^* \times \{0, 1 \}^*</math> является ''полиномиально сбалансированным'', если существует полином ''p'', такой, что для всех пар <math>(x, y) \in R</math> верно <math>|y| \le p(|x|)</math>. Это отношение ''вычислимо за полиномиальное время'', если для каждой пары (x,y) можно решить, верно ли <math>(x, y) \in R</math>, за время, полиномиальное относительно |x| + |y|. <math>\mathcal NP</math>-полная задача поиска <math>Q_R</math>, задаваемая R, определяется следующим образом:
Бинарное отношение <math>R \subset \{ 0, 1 \}^* \times \{0, 1 \}^*</math> является ''полиномиально сбалансированным'', если существует полином ''p'', такой, что для всех пар <math>(x, y) \in R</math> верно <math>|y| \le p(|x|)</math>. Это отношение ''вычислимо за полиномиальное время'', если для каждой пары (x,y) можно решить, верно ли <math>(x, y) \in R</math>, за время, полиномиальное относительно |x| + |y|. <math>\mathcal NP</math>-[[Классы P и NP|полная]] задача поиска <math>Q_R</math>, задаваемая R, определяется следующим образом:


пусть дано <math>x \in \{0, 1 \}^*</math>. Если существует y, такое, что <math>(x, y) \in R</math>, то алгоритм возвращает y, в противном случае он возвращает специальную строку «нет».
пусть дано <math>x \in \{0, 1 \}^*</math>. Если существует y, такое, что <math>(x, y) \in R</math>, то алгоритм возвращает y, в противном случае он возвращает специальную строку «нет».




Отношение R является ''полным'', если для каждого <math>x \in \{0, 1 \}^*</math> существует y, такое, что <math>(x, y) \in R</math>. Следуя [7], обозначим за <math>\mathcal TFNP</math> класс всех <math>\mathcal NP</math>-полных задач поиска, заданных полными отношениями. Задача поиска <math>Q_{R_1} \in \mathcal{TFNP}</math> ''полиномиально сводима'' к задаче <math>Q_{R_2} \in \mathcal{TFNP}</math>, если существует пара полиномиально вычислимых функций (f, g), таких, что для каждого x из <math>R_1</math> в случае, если y удовлетворяет условию <math>(f(x), y) \in R_2</math>, верно <math>(x, g(y)) \in R_1</math>. Более того, <math>Q_{R_1}</math> и <math>Q_{R_2}</math> полиномиально эквивалентны, если <math>Q_{R_2}</math> также сводима к <math>Q_{R_1}</math>.
Отношение R является ''полным'', если для каждого <math>x \in \{0, 1 \}^*</math> существует y, такое, что <math>(x, y) \in R</math>. Следуя [7], обозначим за <math>\mathcal TFNP</math> класс всех <math>\mathcal NP</math>-полных задач поиска, заданных полными отношениями. Задача поиска <math>Q_{R_1} \in \mathcal{TFNP}</math> ''[[Полиномиальная_сводимость_(трансформируемость)|полиномиально сводима]]'' к задаче <math>Q_{R_2} \in \mathcal{TFNP}</math>, если существует пара полиномиально вычислимых функций (f, g), таких, что для каждого x из <math>R_1</math> в случае, если y удовлетворяет условию <math>(f(x), y) \in R_2</math>, верно <math>(x, g(y)) \in R_1</math>. Более того, <math>Q_{R_1}</math> и <math>Q_{R_2}</math> полиномиально эквивалентны, если <math>Q_{R_2}</math> также сводима к <math>Q_{R_1}</math>.




4551

правка

Навигация