4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 35: | Строка 35: | ||
'''Триангуляция Делоне''' <math>\Delta</math> множества вершин V, вложенных в <math>\mathcal{R}^2</math>, представляет собой геометрическую двойственную конструкцию диаграммы Вороного [9] V, в которой две вершины в V связаны ребром в <math>\Delta</math>, если соответствующие им ячейки диаграммы Вороного инцидентны друг другу. Триангуляция Делоне <math>\Delta</math> является ''единичной'', если длина ребер в ней не превышает 1. | '''Триангуляция Делоне''' <math>\Delta</math> множества вершин V, вложенных в <math>\mathcal{R}^2</math>, представляет собой геометрическую двойственную конструкцию ''диаграммы Вороного'' [9] V, в которой две вершины в V связаны ребром в <math>\Delta</math>, если соответствующие им ячейки диаграммы Вороного инцидентны друг другу. Триангуляция Делоне <math>\Delta</math> является ''единичной'', если длина ребер в ней не превышает 1. | ||
«'''Принцип правой руки'''»: правило, используемое алгоритмами обхода графа, которые при движении в | «'''Принцип правой руки'''»: правило, используемое алгоритмами обхода графа, которые при движении в сторону точки назначения первым выбирают ребро, ведущее вправо. | ||
'''Кучеобразная структура'''. Пусть G = (V, E) – неориентированный планарный граф, такой, что каждая вершина в V содержит некоторое численное значение. Кучеобразная структура представляет собой базисное возможное решение (BFS) в виде дерева T, содержащее все вершины G, такое, что для каждой вершины v, отличной от корня, хранящееся в v значение меньше значения, хранящегося в предке v. | '''Кучеобразная структура'''. Пусть G = (V, E) – неориентированный планарный граф, такой, что каждая вершина в V содержит некоторое численное значение. ''Кучеобразная структура'' представляет собой базисное возможное решение (BFS) в виде дерева T, содержащее все вершины G, такое, что для каждой вершины v, отличной от корня, хранящееся в v значение меньше значения, хранящегося в предке v. | ||
'''Системы кластеров''' [2]. Пусть G = (V, E) – неориентированный планарный граф, имеющий | '''Системы кластеров''' [2]. Пусть G = (V, E) – неориентированный планарный граф, имеющий |V| = n вершин и радиус R. Можно построить систему семейств кластеров F(0), F(1), ..., F(log R), такую, что (1) диаметр каждого кластера в F(i) составляет <math>O(2^i \; log \; n)</math>, (2) каждая вершина принадлежит не более чем к O(log n) кластерам, (3) для любых двух вершин, расстояние между которыми в G описывается неравенством <math>2^{i - 1} < d \le 2^i</math>, существует по меньшей мере один кластер в F(i), содержащий две вершины. | ||
== Основные результаты и применение == | == Основные результаты и применение == |
правка