4511
правок
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 8: | Строка 8: | ||
У каждой вершины один и тот же диапазон передачи; если вершина v находится в пределах диапазона передачи некоторой другой вершины u, то вершина u может непосредственно передавать данные вершине v, и наоборот. Таким образом, сеть может быть смоделирована при помощи неориентированного графа G = (V, E), в котором две вершины < | У каждой вершины один и тот же диапазон передачи; если вершина v находится в пределах диапазона передачи некоторой другой вершины u, то вершина u может непосредственно передавать данные вершине v, и наоборот. Таким образом, сеть может быть смоделирована при помощи неориентированного графа G = (V, E), в котором две вершины <math>u, v \in V</math> соединены ребром <math>(u, v) \in E</math> в том случае, если они находятся в пределах диапазона передачи друг друга. Такие две вершины называются ''соседними вершинами'' или просто ''соседями''. Если две вершины находятся за пределами диапазона передачи друг друга, потребуется многоскачковая передача; иными словами, эти вершины должны будут связываться друг с другом через промежуточные вершины. | ||
Строка 14: | Строка 14: | ||
В геометрических сетях не предполагается фиксированной инфраструктуры | В геометрических сетях не предполагается фиксированной инфраструктуры или центрального сервера. Иначе говоря, все вершины выступают и как ячейки сети, и как маршрутизаторы. Топология сети неизвестна вершинам за исключением их непосредственного окружения, т. е. каждая вершина знает свое местоположение и координаты своих соседей. Вершины должны вычислить и поддерживать маршруты для многоскачковых передач самостоятельным и распределенным образом. В большинстве случаев предполагается (если речь идет о сетях датчиков), что память и мощность каждой вершины ограничены. | ||
правок