Сортировка при помощи транспозиций и обращений (коэффициент аппроксимации 1,5): различия между версиями

Перейти к навигации Перейти к поиску
м
нет описания правки
(Новая страница: «== Ключевые слова и синонимы == Перестройка генома == Постановка задачи == Одним из наиболе…»)
 
мНет описания правки
Строка 3: Строка 3:


== Постановка задачи ==
== Постановка задачи ==
Одним из наиболее многообещающих способов определения эволюционного расстояния между двумя организмами является сравнение порядка появления идентичных (например, ортологичных) генов в их геномах. Соответствующая задача перестройки генома заключается в нахождении кратчайшей последовательности операций перегруппировки, при помощи которых один геном можно перестроить в другой. В работе [ ] Хартман и Шаран предложили алгоритм 1,5-аппроксимации для решения задачи сортировки при помощи транспозиций, транспозиций-обращений и двойных обращений, улучшив ранее полученный коэффициент аппроксимации для этой задачи. Их алгоритм также работает быстрее современных аналогов, требуя O(n3/2 plog n) времени для n генов.
Одним из наиболее многообещающих способов определения эволюционного расстояния между двумя организмами является сравнение порядка появления идентичных (например, ортологичных) генов в их геномах. Соответствующая задача перестройки генома заключается в нахождении кратчайшей последовательности операций перегруппировки, при помощи которых один геном можно перестроить в другой. В работе [8] Хартман и Шаран предложили алгоритм 1,5-аппроксимации для решения задачи сортировки при помощи транспозиций, транспозиций-обращений и двойных обращений, улучшив ранее полученный коэффициент аппроксимации для этой задачи. Их алгоритм также работает быстрее современных аналогов, требуя <math>O(n^{3/2} \sqrt{log \; n})</math> времени для n генов.


== Нотация и определение ==
== Нотация и определение ==
Строка 9: Строка 9:




Рисунок 1
[[Файл:Sort_transp_1.png]]


(a) Эквивалентность операций transreversal и revrev на циклических перестановках. (b) Граф разрывов G(JT) перестановки ж = [1,-4,6,-5,2, -7,-3], для которого f(n) = [1;2;8;7; 11; 12; 10;9; 3;4; 14; 13;6;5]. Граф G(n) удобно изображать на круге, поскольку его черные ребра (т. е. толстые линии) располагаются на окружности, а серые (т. е. тонкие) являются хордами
Рисунок 1. (a) Эквивалентность операций transreversal и revrev на циклических перестановках. (b) Граф разрывов G(JT) перестановки ж = [1,-4,6,-5,2, -7,-3], для которого f(n) = [1;2;8;7; 11; 12; 10;9; 3;4; 14; 13;6;5]. Граф G(n) удобно изображать на круге, поскольку его черные ребра (т. е. толстые линии) располагаются на окружности, а серые (т. е. тонкие) являются хордами


== Основные результаты ==
== Основные результаты ==
4501

правка

Навигация