4511
правок
Irina (обсуждение | вклад) мНет описания правки |
Irina (обсуждение | вклад) м (→Применение) |
||
(не показаны 3 промежуточные версии этого же участника) | |||
Строка 42: | Строка 42: | ||
В оффлайновом случае <math>\rho_A \;</math> является | В оффлайновом случае <math>\rho_A \;</math> является ''коэффициентом аппроксимации'' алгоритма. В онлайновом случае будем называть <math>\rho_A \;</math> ''коэффициентом конкурентоспособности'' A. | ||
'''Вытеснение''' | '''Вытеснение''' | ||
Если ''вытеснение'' разрешено, обработка задания может быть прервана и возобновлена после завершения других заданий в промежутке. Как будет показано далее, вытеснение необходимо для разработки эффективных алгоритмов на базе рассматриваемой структуры [5,6]. | Если ''вытеснение'' разрешено, обработка задания может быть прервана и возобновлена после завершения других заданий в промежутке. Как будет показано далее, вытеснение необходимо для разработки эффективных алгоритмов на базе рассматриваемой структуры [5, 6]. | ||
== Основные результаты == | == Основные результаты == | ||
Строка 53: | Строка 53: | ||
'''Алгоритмы''' | '''Алгоритмы''' | ||
Рассмотрим любое задание j данного экземпляра и время t в плане A и обозначим за <math>w_j(t) \;</math> количество времени, проведенного A над выполнением задания j до t. Обозначим за <math>x_j(t) = p_j - w_j(t) \;</math> его ''оставшееся время обработки'' в момент t. | Рассмотрим любое задание j данного экземпляра и время t в плане A и обозначим за <math>w_j(t) \;</math> количество времени, проведенного A над выполнением задания j до наступления момента t. Обозначим за <math>x_j(t) = p_j - w_j(t) \;</math> его ''оставшееся время обработки'' в момент t. | ||
Наилучшей известной эвристикой для минимизации средней продолжительности потока при разрешенном вытеснении является эвристика ''«наименьшее оставшееся время обработки»'' (shortest remaining processing time, SRPT). В любое время t | Наилучшей известной эвристикой для минимизации средней продолжительности потока при разрешенном вытеснении является эвристика ''«наименьшее оставшееся время обработки»'' (shortest remaining processing time, SRPT). В любое время t эвристика SRPT выполняет «повисшее» задание j, для которого <math>x_j(t) \;</math> минимально. Если вытеснение не разрешено, эта эвристика превращается в эвристику ''«сначала самое короткое задание»'' (shortest job first, SJF): в начале выполнения плана или при завершении задания алгоритм выбирает «повисшее» задание с наименьшим временем обработки и выполняет его до завершения. | ||
'''Сложность''' | '''Сложность''' | ||
Рассматриваемая задача является полиномиально разрешимой на единичном компьютере с вытеснением [9,10]. Если вытеснение допускается, то оптимальным для одного компьютера является подход SRPT. На параллельных компьютерах наилучшая известная верхняя граница для случая с | Рассматриваемая задача является полиномиально разрешимой на единичном компьютере с разрешенным вытеснением [9, 10]. Если вытеснение допускается, то оптимальным для одного компьютера является подход SRPT. На параллельных компьютерах наилучшая известная верхняя граница для случая с вытеснением достигается алгоритмом SRPT, который является O(log min n/m, P)-аппроксимируемым [6], где P – отношение между самым большим и самым малым временем обработки для данного экземпляра. Заметим, что алгоритм SRPT является онлайновым, так что предыдущий результат выполняется также и для онлайнового случая. Кроме того, в [6] было доказано, что в онлайновом случае эта нижняя граница является строгой. Для оффлайнового случая с разрешенным вытеснением не найдено неконстантной нижней границы. | ||
В случае с отсутствием вытеснения ни один оффлайновый алгоритм не способен улучшить <math>\Omega (n^{1/3 - \epsilon})</math>-аппроксимацию, для любого <math>\epsilon > 0 \;</math>, а наилучшая верхняя граница составляет <math>O(\sqrt{n/m} \; log(n/m))</math> [6]. В случае с единственным компьютером верхняя и нижняя границы приобретают вид <math>O(\sqrt{n})</math> и <math>\Omega (n^{1/2 - \epsilon})</math> [5]. | В случае с отсутствием вытеснения ни один оффлайновый алгоритм не способен улучшить <math>\Omega (n^{1/3 - \epsilon})</math>-аппроксимацию, для любого <math>\epsilon > 0 \;</math>, а наилучшая верхняя граница составляет <math>O(\sqrt{n/m} \; log(n/m))</math> [6]. В случае с единственным компьютером верхняя и нижняя границы приобретают вид <math>O(\sqrt{n})</math> и <math>\Omega (n^{1/2 - \epsilon})</math>, соответственно [5]. | ||
'''Расширения''' | '''Расширения''' | ||
Для вышеописанных сценариев было предложено немало расширений, в частности, для онлайнового случая с разрешенным вытеснением. Большинство предположений касались мощности алгоритма или знания экземпляра входных данных. В первом случае представляет интерес вариант, в котором алгоритм выполняется на более быстрых компьютерах, нежели его оптимальный аналог. Этот аспект обсуждался в работе [4]. Ее авторы доказали, что даже небольшое повышение скорости приводит к тому, что | Для вышеописанных сценариев было предложено немало расширений, в частности, для онлайнового случая с разрешенным вытеснением. Большинство предположений касались мощности алгоритма или знания экземпляра входных данных. В первом случае представляет интерес вариант, в котором алгоритм выполняется на более быстрых компьютерах, нежели его оптимальный аналог. Этот аспект обсуждался в работе [4]. Ее авторы доказали, что даже небольшое повышение скорости приводит к тому, что эффективность некоторых простых эвристик будет приближена к оптимальной. | ||
Что до знания алгоритмом экземпляра входных данных, любопытным вариантом онлайновой конфигурации, встречающимся во многих современных практических приложениях, является вышеупомянутый подход с отсутствием предвидения. Этот аспект рассматривался в [1, 3]. В частности, авторы [1] доказали, что рандомизированный вариант эвристики MLF, | Что до знания алгоритмом экземпляра входных данных, любопытным вариантом онлайновой конфигурации, встречающимся во многих современных практических приложениях, является вышеупомянутый подход с отсутствием предвидения. Этот аспект рассматривался в работах [1, 3]. В частности, авторы [1] доказали, что рандомизированный вариант эвристики MLF, описанной выше, позволяет получить коэффициент конкурентоспособности, который в среднем отличается от оптимума не более чем на полилогарифмический коэффициент. | ||
== Применение == | == Применение == | ||
Первой и основной сферой приложения политик планирования является распределение ресурсов по процессам в многозадачных операционных системах [11]. В частности, использование эвристик, подобных «сначала самое короткое задание», | Первой и основной сферой приложения политик планирования является распределение ресурсов по процессам в многозадачных операционных системах [11]. В частности, использование эвристик, подобных «сначала самое короткое задание», а именно эвристики MLF, документировано в таких широко распространенных ОС, как UNIX и WINDOWS NT [8, 11]. Впоследствии рассматривалось их применение в других областях – таких как доступ к веб-ресурсам [2]. | ||
== Открытые вопросы == | == Открытые вопросы == |
правок