Локальный поиск для задачи о k-медианах и задачи о размещении объектов: различия между версиями

Перейти к навигации Перейти к поиску
м
Строка 95: Строка 95:
'''Родственные алгоритмические техники'''
'''Родственные алгоритмические техники'''


Задачи о k-медианах и задачи о размещении объектов могут похвастаться долгой историей аппроксимации с достойными результатами. Начиная с первого исследования задачи о размещении объектов без ограничений на пропускную способность, выполненного Корнюжо, Немхаузером и Уолси [5], которые представили естественную релаксацию линейного программирования (LP) для этой задачи, было разработано несколько аппроксимаций с константными коэффициентами, использующих различные техники – таких как округление LP-решения [11, 15], локальный поиск [2, 9], прямо-двойственная схема [7] и двойное выравнивание [6]. Для задачи о k-медианах первая аппроксимация с константным коэффициентом <math>6 \frac{2}{3}</math> [3] была получена в результате округления естественной LP-релаксации при помощи обобщения техники фильтрации, предложенной в работе [11]. Результат был последовательно улучшен до 4-аппроксимации при помощи лагранжевой релаксации и прямо-двойственной схемы [2, 7], а затем до <math>(3 + \varepsilon \;)</math>-аппроксимации при помощи локального поиска [1].
Задачи о k-медианах и задачи о размещении объектов могут похвастаться долгой историей аппроксимации с достойными результатами. Начиная с первого исследования задачи о размещении объектов без ограничений на пропускную способность, выполненного Корнюжо, Немхаузером и Уолси [5], которые представили естественную релаксацию линейного программирования (LP) для этой задачи, было разработано несколько аппроксимаций с константными коэффициентами, использующих различные техники – таких как округление LP-решения [11, 15], локальный поиск [2, 9], прямо-двойственная схема [7] и двойное выравнивание [6]. Для задачи о k-медианах первая аппроксимация с константным коэффициентом 6 2/3 [3] была получена в результате округления естественной LP-релаксации при помощи обобщения техники фильтрации, предложенной в работе [11]. Результат был последовательно улучшен до 4-аппроксимации при помощи лагранжевой релаксации и прямо-двойственной схемы [2, 7], а затем до <math> \; (3 + \varepsilon)</math>-аппроксимации при помощи локального поиска [1].


== Применение ==
== Применение ==
4511

правок

Навигация