4511
правок
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 7: | Строка 7: | ||
1. Метрика ''расстояния'' '''d''' между элементами набора данных. Эта метрика должна удовлетворять неравенству треугольника: '''d'''(i, j) <math>\le</math> '''d'''(j, k) + '''d'''(k, i) для любых трех элементов <math>i, j, k \in \mathcal{D} \;</math>. Кроме того, '''d'''(i, j) = '''d'''(j, i) для всех <math>i, j \in S \;</math>, '''d'''(i, i) = 0. Интуитивно понятно, что если расстояние между двумя элементами меньше, то они больше похожи друг на друга. Элементами обычно являются точки в некотором евклидовом пространстве <math>\mathcal{R}^d</math> высокой размерности. В качестве метрик расстояния чаще всего применяются евклидова метрика и расстояние Хэмминга, а также косинусная метрика, измеряющая угол между векторами, представляющими элементы. | 1. Метрика ''расстояния'' '''d''' между элементами набора данных. Эта метрика должна удовлетворять неравенству треугольника: '''d'''(i, j) <math>\le</math> '''d'''(j, k) + '''d'''(k, i) для любых трех элементов <math>i, j, k \in \mathcal{D} \;</math>. Кроме того, '''d'''(i, j) = '''d'''(j, i) для всех <math>i, j \in S \;</math>, '''d'''(i, i) = 0. Интуитивно понятно, что если расстояние между двумя элементами меньше, то они больше похожи друг на друга. Элементами обычно являются точки в некотором евклидовом пространстве <math>\mathcal{R}^d</math> высокой размерности. В качестве метрик расстояния чаще всего применяются евклидова метрика и расстояние Хэмминга, а также косинусная метрика, измеряющая угол между векторами, представляющими элементы. | ||
2. Результатом (выходными данными) процесса кластеризации является разбиение данных. В данной главе рассматривается кластеризация ''на основе центров''. В ней результатом является множество меньшего размера <math>C \subset \mathcal{R}^d</math>, состоящее из центров, которые наилучшим образом представляют входное множество данных <math>S \subset \mathcal{R}^d</math>. Как правило, имеет место соотношение <math>|C| \ll |\mathcal{D}|</math>. Каждый элемент <math>j \in \mathcal{D}</math> ''отображается'' на ближайший центр или ''аппроксимируется'' ближайшим центром <math>i \in C \;</math>, из чего следует '''d'''(i, j) <math>\le</math> '''d'''(i', j) для всех <math>i' \in C \;</math>. Обозначим за <math>\sigma: \mathcal{D} \to C</math> это отображение. Оно является интуитивно понятным, поскольку более близкие (схожие) элементы будут отображаться на один и тот же центр. | 2. Результатом (выходными данными) процесса кластеризации является разбиение данных. В данной главе рассматривается кластеризация ''на основе центров''. В ней результатом является множество меньшего размера <math>C \subset \mathcal{R}^d</math>, состоящее из ''центров'', которые наилучшим образом представляют входное множество данных <math>S \subset \mathcal{R}^d</math>. Как правило, имеет место соотношение <math>|C| \ll |\mathcal{D}|</math>. Каждый элемент <math>j \in \mathcal{D}</math> ''отображается'' на ближайший центр или ''аппроксимируется'' ближайшим центром <math>i \in C \;</math>, из чего следует '''d'''(i, j) <math>\le</math> '''d'''(i', j) для всех <math>i' \in C \;</math>. Обозначим за <math>\sigma: \mathcal{D} \to C</math> это отображение. Оно является интуитивно понятным, поскольку более близкие (схожие) элементы будут отображаться на один и тот же центр. | ||
3. Мера ''качества'' кластеризации, зависящая от желаемого выходного результата. Существует несколько широко используемых мер для оценки качества кластеризации. Для каждой из мер кластеризации, описанных ниже, задача заключается в выборе такого C, что |C| = k и целевая функция f(C) минимизирована. | 3. Мера ''качества'' кластеризации, зависящая от желаемого выходного результата. Существует несколько широко используемых мер для оценки качества кластеризации. Для каждой из мер кластеризации, описанных ниже, задача заключается в выборе такого C, что |C| = k и целевая функция f(C) минимизирована. | ||
Строка 18: | Строка 18: | ||
Все вышеупомянутые цели являются NP- | Все вышеупомянутые цели являются NP-сложными для оптимизации в метрических пространствах общего вида '''d''', что вызвало необходимость изучения эвристических и приближенных алгоритмов. Далее главным образом будет рассматриваться целевая функция на основе k-медиан. Алгоритмы аппроксимации для кластеризации на основе метода k-медиан разработаны для пространства '''d''', являющегося неевклидовым метрическим пространством наиболее общего возможного вида. Совокупность <math>\mathcal{F}</math> возможных местоположений центров задана в качестве начального условия, множество центров C ограничено <math>C \subset \mathcal{F}</math>. С точки зрения аппроксимации ограничение возможных центров конечным множеством <math>\mathcal{F}</math> не является чрезмерно строгим: например, для оптимального решения, ограниченного <math>\mathcal{F} = \mathcal{D}</math>, его целевое значение не более чем в 2 раза превышает оптимальное значение, допускаемое при произвольном <math>\mathcal{F}</math>. Обозначим <math>|\mathcal{D}| = n</math> и <math>|\mathcal{F}| = m</math>. Время выполнения построенной эвристики будет представлено полиномом от mn с параметром <math>\varepsilon > 0 \;</math>. Метрическое пространство '''d''' теперь определяется над <math>\mathcal{D} \cup \mathcal{F}</math>. | ||
правок