Алгоритмы локального поиска для k-КНФ: различия между версиями

Перейти к навигации Перейти к поиску
м
Строка 3: Строка 3:


== Основные результаты ==
== Основные результаты ==
В длинном списке алгоритмов для k-SAT алгоритм Шонинга [11] стал революционным прорывом. Это стандартный подход с использованием локального поиска, и сам по себе алгоритм не был новинкой (см., например, [7]). Предположим, что y – текущее присваивание (его начальное значение равномерно выбирается случайным образом). Если присваивание y обеспечивает выполнимость формулы, алгоритм выдает ответ «Да» и завершает работу. В противном случае имеется по меньшей мере один дизъюнкт, литералы которого на присваивании y имеют значение «ложь». Выберем такой произвольный дизъюнкт и выберем случайным образом один из трех литералов. Затем изменим значение этой переменной на противоположное («истина» на «ложь» и наоборот), заменим y этим новым присваиванием и повторим ту же процедуру.
В длинном списке алгоритмов для k-SAT алгоритм Шонинга [11] стал революционным прорывом. Это стандартный подход с использованием локального поиска, и сам по себе алгоритм не был новинкой (см., например, [7]). Предположим, что y – текущее присваивание (его начальное значение равномерно выбирается случайным образом). Если присваивание y обеспечивает выполнимость формулы, алгоритм выдает ответ «Да» и завершает работу. В противном случае имеется по меньшей мере один дизъюнкт, все три литерала которого на присваивании y имеют значение «ложь». Выберем такой произвольный дизъюнкт и выберем случайным образом один из трех литералов. Затем изменим значение этой переменной на противоположное («истина» на «ложь» и наоборот), заменим y этим новым присваиванием и повторим ту же процедуру.
Более формально алгоритм выглядит следующим образом:
Более формально алгоритм выглядит следующим образом:


Строка 26: Строка 26:




Шонинг выполнил очень изящный анализ этого алгоритма. Обозначим за d(a, b) [[Hamming distance|расстояние Хэмминга]] между двумя бинарными векторами (присваиваниями) a и b. Для простоты будем считать, что формула F оказывается выполнимой только на одном присваивании y* и что текущее присваивание y находится от y* на расстоянии Хэмминга d. Предположим также, что ложный в настоящий момент дизъюнкт C включает три переменные – <math>x_i, x_j \;</math> и <math>x_k \;</math>. Тогда y и y* должны различаться по меньшей мере в одной из этих переменных. Это значит, что если поменять значение <math>x_i, x_j \;</math> или <math>x_k \;</math> на противоположное, то новое присваивание будет ближе к y* согласно расстоянию Хэмминга с вероятностью не ниже 1/3 – и дальше от него с вероятностью не более 2/3. Это рассуждение можно распространить на случай, когда формула F оказывается выполнимой на нескольких присваиваниях. Отсюда следует важная лемма.
Шонинг выполнил очень изящный анализ этого алгоритма. Обозначим за d(a, b) [[Hamming distance|расстояние Хэмминга]] между двумя бинарными векторами (присваиваниями) a и b. Для простоты будем считать, что формула F оказывается выполнимой только на одном присваивании y* и что текущее присваивание y находится от y* на расстоянии Хэмминга d. Предположим также, что ложный в настоящий момент дизъюнкт C включает три переменных – <math>x_i, x_j \;</math> и <math>x_k \;</math>. Тогда y и y* должны различаться по меньшей мере по одной из этих переменных. Это значит, что если поменять значение <math>x_i, x_j \;</math> или <math>x_k \;</math> на противоположное, то новое присваивание будет ближе к y* согласно расстоянию Хэмминга с вероятностью не ниже 1/3 – и дальше от него с вероятностью не более 2/3. Это рассуждение можно распространить на случай, когда формула F оказывается выполнимой на нескольких присваиваниях. Отсюда следует важная лемма.




4501

правка

Навигация