4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 81: | Строка 81: | ||
К примеру, гамма-код Элиаса можно рассматривать как унарно-бинарную комбинацию относительно вектора размеров блоков <math>\langle 2^0, 2^1, 2^2, 2^3, 2^4, ... \rangle</math>. Тейхола [15] предложил гибридный подход, в рамках которого выбирается параметр k, а вектор размеров блоков задается формулой <math>\langle 2^k, 2^{k+1}, 2^{k+2}, 2^{k + 3}, ... \rangle</math>. Одним из вариантов для параметра k является длина в битах медианы последовательности значений, так что первый бит каждого кодового слова делит диапазон наблюдаемых значений символов приблизительно пополам. Другой вариант описали Болди и Винья Vigna [2], которые использовали вектор <math>\langle 2k - | К примеру, гамма-код Элиаса можно рассматривать как унарно-бинарную комбинацию относительно вектора размеров блоков <math>\langle 2^0, 2^1, 2^2, 2^3, 2^4, ... \rangle</math>. Тейхола [15] предложил гибридный подход, в рамках которого выбирается параметр k, а вектор размеров блоков задается формулой <math>\langle 2^k, 2^{k+1}, 2^{k+2}, 2^{k + 3}, ... \rangle</math>. Одним из вариантов для параметра k является длина в битах медианы последовательности значений, так что первый бит каждого кодового слова делит диапазон наблюдаемых значений символов приблизительно пополам. Другой вариант описали Болди и Винья Vigna [2], которые использовали вектор <math>\langle 2k - 1,(2^k - 1)2^k, (2k - 1)2^{2k}, (2k - l)2^{3k} ,... \rangle</math> для получения семейства кодов, аналитически и эмпирически подходящих для случаев экспоненциального распределения вероятностей, в том числе связанных со сжатием веб-графов. При использовании этого метода значение k обычно принадлежит к диапазону от 2 до 4, а в суффиксной части используется минимальный двоичный код. | ||
правка