Протяженность геометрических сетей: различия между версиями

Перейти к навигации Перейти к поиску
м
 
Строка 81: Строка 81:


== Открытые вопросы ==
== Открытые вопросы ==
Для практического применения в дополнение к верхним границам протяженности пригодились бы верхние границы веса (т.е. общей длины ребер) геометрической сети. Некоторые теоретические вопросы также требуют дополнительного исследования. Всегда ли <math>\Sigma(S) \;</math> достигается для конечной сети? Как вычислить (точно или приближенно) <math>\Sigma(S) \;</math> для заданного конечного множества S? Даже для такого простого множества, как <math>S_5 \;</math>, представляющего собой углы правильного пятиугольника, протяженность неизвестна. Наименьшее известное значение протяженности для триангуляции, среди вершин которой содержится <math>S_5 \;</math>, равно 1,0204 (см. рис. 3). Наконец, чему равно точное значение <math> sup \{ \Sigma(S); S \; finite \}</math>?
Для практического применения в дополнение к верхним границам протяженности пригодились бы верхние границы веса (т.е. общей длины ребер) геометрической сети. Некоторые теоретические вопросы также требуют дополнительного исследования. Всегда ли <math>\Sigma(S) \;</math> достигается для конечной сети? Как вычислить (точно или приближенно) <math>\Sigma(S) \;</math> для заданного конечного множества S? Даже для такого простого множества, как <math>S_5 \;</math>, представляющего собой углы правильного пятиугольника, протяженность неизвестна. Наименьшее известное значение протяженности для триангуляции, среди вершин которой содержится <math>S_5 \;</math> равно 1,0204 (см. рис. 3). Наконец, чему равно точное значение <math> sup \{ \Sigma(S); S \; finite \}</math>?




[[Файл:DGN_3.png]]
[[Файл:DGN_3.png]]


Рис. 3. Наилучшее известное вложение для S5
Рис. 3. Наилучшее известное вложение для <math>S_5 \;</math>


== См. также ==
== См. также ==
4551

правка

Навигация