Протяженность геометрических сетей: различия между версиями

Перейти к навигации Перейти к поиску
м
Строка 70: Строка 70:


== Открытые вопросы ==
== Открытые вопросы ==
Для практического применения в дополнение к верхним границам протяженности пригодились бы верхние границы веса (т.е. общей длины ребер) геометрической сети. Некоторые теоретические вопросы также требуют дополнительного исследования. Всегда ли <math>\Delta(S) \;</math> достигается для конечной сети? Как вычислить (точно или приближенно) <math>\Delta(S) \;</math> для заданного конечного множества S? Даже для такого простого множества, как S5, представляющего собой углы правильного пятиугольника, протяженность неизвестна. Наименьшее известное значение протяженности для триангуляции, среди вершин которой содержится S5, равно 1,0204 (см. рис. 3). Наконец, чему равно точное значение <math> sup \{ \Delta(S); S \; finite \}</math>?
Для практического применения в дополнение к верхним границам протяженности пригодились бы верхние границы веса (т.е. общей длины ребер) геометрической сети. Некоторые теоретические вопросы также требуют дополнительного исследования. Всегда ли <math>\Sigma(S) \;</math> достигается для конечной сети? Как вычислить (точно или приближенно) <math>\Sigma(S) \;</math> для заданного конечного множества S? Даже для такого простого множества, как <math>S_5 \;</math>, представляющего собой углы правильного пятиугольника, протяженность неизвестна. Наименьшее известное значение протяженности для триангуляции, среди вершин которой содержится <math>S_5 \;</math>, равно 1,0204 (см. рис. 3). Наконец, чему равно точное значение <math> sup \{ \Sigma(S); S \; finite \}</math>?


== См. также ==
== См. также ==
4551

правка

Навигация