Геометрические остовы: различия между версиями

Перейти к навигации Перейти к поиску
м
Строка 111: Строка 111:




Для геометрических остовов естественно рассматривать ''отказы областей'' – то есть отказы, уничтожающие все вершины и ребра, пересекающие некоторую нерабочую геометрическую область. Пусть для нерабочей области F граф <math>G \ominus F</math> представляет собой часть G, оставшуюся после того, как точки из S, находящиеся внутри области F, и все ребра, пересекающие F, были удалены из графа; см. рис. 1b. Абам и др. [1] показали, как строить t-остовы размера O(n log n), являющиеся отказоустойчивыми при  отказе любой выпуклой области. Если разрешается использовать [[точка Штейнера|точки Штейнера]], можно получить t-остов линейного размера.
Для геометрических остовов естественно рассматривать ''отказы областей'' – то есть отказы, уничтожающие все вершины и ребра, пересекающие некоторую нерабочую геометрическую область. Пусть имеется нерабочая область F; граф <math>G \ominus F</math> представляет собой часть G, оставшуюся после того, как точки из S, находящиеся внутри области F, и все ребра, пересекающие F, были удалены из графа (см. рис. 1b). Абам и др. [1] показали, как строить t-остовы размера O(n log n), являющиеся отказоустойчивыми при  отказе любой выпуклой области. Если разрешается использовать [[точка Штейнера|точки Штейнера]], можно получить t-остов линейного размера.




'''Остовы с многоугольными препятствиями'''
'''Остовы с препятствиями'''


Граф видимости на множестве попарно непересекающихся многоугольников называется графом взаимовидимых областей. Каждая многоугольная вершина является вершиной в графе, а каждое ребро представляет видимую связь между ними: если две вершины видят друг друга, между ними строится ребро. Этот граф полезен благодаря тому, что содержит кратчайший путь, огибающий препятствия, между парой любых вершин.
Граф видимости на множестве попарно непересекающихся многоугольников называется графом взаимовидимых областей. Каждая многоугольная вершина является вершиной в графе, а каждое ребро представляет видимую связь между ними: если две вершины видят друг друга, между ними строится ребро. Этот граф полезен благодаря тому, что содержит кратчайший путь, огибающий препятствия, между парой любых вершин.
4551

правка

Навигация