4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 70: | Строка 70: | ||
'''Линеаризованная квадратичная компоновка''' | '''Линеаризованная квадратичная компоновка''' | ||
Качество компоновки при помощи квадратичных алгоритмов может оказаться невысоким. Для аппроксимации линейной целевой функции можно итеративно решить уравнение (1), вычисляя <math>w_{ij} = \frac{1}{|x_i - x_j|} \;</math> на каждой итерации. Другим вариантом может быть решение единичной <math>\beta \;</math>-регуляризованной задачи оптимизации, заданной формулой <math>\Phi(\mathbf{x}) = min_x \sum_{i,j} w_{ij} \sqrt{(x_i - x_j)^2 + \beta} , \beta > 0 \;</math> - например, с использованием прямо-двойственного метода Ньютона с квадратичной сходимостью [1]. | Качество компоновки при помощи квадратичных алгоритмов может оказаться невысоким. Для аппроксимации линейной целевой функции можно итеративно решить уравнение (1), вычисляя <math>w_{ij} = \frac{1}{|x_i - x_j|} \;</math> на каждой итерации. Другим вариантом может быть решение единичной <math>\beta \;</math>-регуляризованной задачи оптимизации, заданной формулой <math>\Phi^{\beta} (\mathbf{x}) = min_x \sum_{i,j} w_{ij} \sqrt{(x_i - x_j)^2 + \beta} , \beta > 0 \;</math> - например, с использованием прямо-двойственного метода Ньютона с квадратичной сходимостью [1]. | ||
'''Компоновка с учетом полной длины проводов полупериметра (HPWL)''' | '''Компоновка с учетом полной длины проводов полупериметра (HPWL)''' | ||
Функция HPWL может быть доказуемо аппроксимирована строго выпуклыми и дифференцируемыми функциями. Для 2-точечных гиперребер можно применять <math>\beta \;</math>-регуляризацию [1]. Для m-точечного гиперребра (при <math>m \ge 3 \;</math>) можно переформулировать HPWL в виде максимума (по норме <math>l_{\infty} \;</math>) среди всех m(m | Функция HPWL может быть доказуемо аппроксимирована строго выпуклыми и дифференцируемыми функциями. Для 2-точечных гиперребер можно применять <math>\beta \;</math>-регуляризацию [1]. Для m-точечного гиперребра (при <math>m \ge 3 \;</math>) можно переформулировать HPWL в виде максимума (по норме <math>l_{\infty} \;</math>) среди всех m(m - 1)/2 попарных расстояний <math>|x_i - x_j| \;</math> и аппроксимировать <math>l_{\infty} \;</math>-норму <math>l_p \;</math>-нормой (p-м корнем из суммы p-х степеней). Это позволяет устранить недифференцируемость при всех значениях, кроме '''0''', что впоследствии убирается при помощи <math>\beta \;</math>-регуляризации. Полученная аппроксимация HPWL задается формулой | ||
(2) <math>HPWL_{p - \beta - reg} (G_h) = \sum_{e_k \in E_h} \bigg( \sum_{i,j \in C_k} |x_i - x_j|^p + \beta \bigg)^{1/p} \;</math> | (2) <math>HPWL_{p - \beta - reg} (G_h) = \sum_{e_k \in E_h} \bigg( \sum_{i,j \in C_k} |x_i - x_j|^p + \beta \bigg)^{1/p} \;</math>, | ||
которая оценивает сверху функцию HPWL с произвольно малой относительной ошибкой, так как <math>p \to \infty \;</math> и <math>\beta \to 0 \;</math> [7]. Кроме того, HPWL также можно аппроксимировать при помощи функции, задаваемой формулой | |||
(3) <math>HPWL_{log-sum-exp}(G_h) = \alpha \sum_{e_k \in E_h} \bigg[ ln \bigg( \sum_{i \in C_k} exp \bigg( \frac{x_i}{ \alpha} \bigg) \bigg) + ln \bigg( \sum_{v_i \in C_k} exp \bigg( \frac{- x_i}{ \alpha} \bigg) \bigg) \bigg] \;</math>. | (3) <math>HPWL_{log-sum-exp}(G_h) = \alpha \sum_{e_k \in E_h} \bigg[ ln \bigg( \sum_{i \in C_k} exp \bigg( \frac{x_i}{ \alpha} \bigg) \bigg) + ln \bigg( \sum_{v_i \in C_k} exp \bigg( \frac{- x_i}{ \alpha} \bigg) \bigg) \bigg] \;</math>. |
правка