4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 98: | Строка 98: | ||
'''Распространение с неподвижной точкой''' | '''Распространение с неподвижной точкой''' | ||
Неподвижная точка f представляет собой псевдовершину с нулевой площадью, зафиксированную в точке ( | Неподвижная точка f представляет собой псевдовершину с нулевой площадью, зафиксированную в точке <math>(x_f, y_f) \;</math> и связанную с одной вершиной H(f) в гиперграфе при помощи псевдоребра весом <math>w_{f, H(f)} \;</math>. Квадратичная компоновка с неподвижной точкой задается формулой <math>\Phi(x) = \sum_{i, j} w_{i, j} \; (x_i - x_j)^2 + \sum_f w_{f, H(f)} \; (x_{H(f)} - x_f)^2</math>. Каждая неподвижная точка f вводит квадратичный член <math>w_{f, H(f)} \; (x_{H(f)} - x_f)^2</math>. Манипулируя положениями неподвижных точек, можно добиться того, что компоновка будет удовлетворять целевым ограничениям плотности. По сравнению с постоянно действующими силами неподвижные точки повышают контролируемость и стабильность итераций алгоритма компоновки [5]. | ||
''' | |||
Обобщенное распространение под действием силы''' | |||
Обобщенное распространение под действием силы | |||
Уравнение Гельмгольца моделирует процесс диффузии и идеально подходит для распространения вершин [ ]. Уравнение Гельмгольца задается выражением | Уравнение Гельмгольца моделирует процесс диффузии и идеально подходит для распространения вершин [ ]. Уравнение Гельмгольца задается выражением |
правка