4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 79: | Строка 79: | ||
(2) <math>HPWL_{p - \beta - reg} (G_h) = \sum_{e_k \in E_h} \bigg( \sum_{i,j \in C_k} |x_i - x_j|^p + \beta \bigg)^{1/p} \;</math>. | (2) <math>HPWL_{p - \beta - reg} (G_h) = \sum_{e_k \in E_h} \bigg( \sum_{i,j \in C_k} |x_i - x_j|^p + \beta \bigg)^{1/p} \;</math>. | ||
которое оценивает сверху функцию HPWL с произвольно малой относительной ошибкой, так как <math>p \to \infty \;</math> и <math>\beta \to 0 \;</math> [7]. Кроме того, HPWL также можно аппроксимировать при помощи функции, задаваемой формулой | |||
которое оценивает сверху функцию HPWL с произвольно малой относительной ошибкой, так как p | |||
HPWLlog-sum-exp(Gh) = | HPWLlog-sum-exp(Gh) = | ||
Строка 109: | Строка 100: | ||
Неподвижная точка f представляет собой псевдовершину с нулевой площадью, зафиксированную в точке (xf,yf) и связанную с одной вершиной H(f) в гиперграфе при помощи псевдоребра весом иун(о-. Квадратичная компоновка с неподвижной точкой задается формулой Ф(х) = 5Z; wi;j(xi ~ xj)2 + дф | Неподвижная точка f представляет собой псевдовершину с нулевой площадью, зафиксированную в точке (xf,yf) и связанную с одной вершиной H(f) в гиперграфе при помощи псевдоребра весом иун(о-. Квадратичная компоновка с неподвижной точкой задается формулой Ф(х) = 5Z; wi;j(xi ~ xj)2 + дф | ||
Каждая неподвижная точка f вводит квадратичный член WF;H(F) (xH(f) —xf)2-. Манипулируя положениями неподвижных точек, можно добиться того, что компоновка будет удовлетворять целевым ограничениям плотности. По сравнению с постоянно действующими силами неподвижные точки повышают контролируемость и стабильность итераций алгоритма компоновки [ ]. | |||
Обобщенное распространение под действием силы | |||
Уравнение Гельмгольца моделирует процесс диффузии и идеально подходит для распространения вершин [ ]. Уравнение Гельмгольца задается выражением | |||
д2ф(х,у) д2ф(х,у) дх2 ду2 + Up | |||
(х,у) € ^ (x; y) на границе R (4) | (х,у) € ^ (x; y) на границе R (4) | ||
правка