4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 41: | Строка 41: | ||
Техника компоновки с минимальным разрезом основана на сбалансированном разбиении гиперграфа с минимальным разрезом и уделяет больше внимания ограничениям плотности [ ]. Вначале вершины исходного гиперграфа разбиваются на две группы примерно равного размера. Одна из них присваивается левой половине области размещения, вторая – правой. Разбиение производится при помощи многоуровневой эвристики Фидуччи-Мэтьюза (Multi-level Fiduccia-Mattheyses, MLFM) [ ], обеспечивая минимизацию связей между двумя группами вершин (целевая функция сетевого разреза). После этого каждая половина также разбивается, учитывая связи с другой половиной [11]. При работе с крупномасштабными схемами требование равной величины компонентов биразбиения соответствует ограничению плотности, а минимизация разреза – минимизации HPWL. Когда области станут настолько малыми, что в них будет содержаться не более 10 вершин, можно будет найти оптимальные позиции относительно | Техника компоновки с минимальным разрезом основана на сбалансированном разбиении гиперграфа с минимальным разрезом и уделяет больше внимания ограничениям плотности [ ]. Вначале вершины исходного гиперграфа разбиваются на две группы примерно равного размера. Одна из них присваивается левой половине области размещения, вторая – правой. Разбиение производится при помощи многоуровневой эвристики Фидуччи-Мэтьюза (Multi-level Fiduccia-Mattheyses, MLFM) [ ], обеспечивая минимизацию связей между двумя группами вершин (целевая функция сетевого разреза). После этого каждая половина также разбивается, учитывая связи с другой половиной [11]. При работе с крупномасштабными схемами требование равной величины компонентов биразбиения соответствует ограничению плотности, а минимизация разреза – минимизации HPWL. Когда области станут настолько малыми, что в них будет содержаться не более 10 вершин, можно будет найти оптимальные позиции относительно ограничений на дискретные порты при помощи алгоритма ветвления и границ [ ]. Задача сбалансированного разбиения гиперграфа является NP-полной [ ], однако эвристика MLFM требует O((V + E)log V) времени, а полная процедура компоновки с минимальным разрезом – O((V + E)(log V)2) времени, она способна обрабатывать гиперграфы с миллионами вершин за несколько часов. | ||
Строка 99: | Строка 99: | ||
(х,у) € ^ (x; y) на границе R (4) | (х,у) € ^ (x; y) на границе R (4) | ||
где e > 0, v – внешняя единичная нормаль, R представляет неподвижный контур, а D(x,y) – непрерывную функцию плотности. Граничные условия дф/dv = 0 диктуют, чтобы силы, направленные вовне неподвижного контура, были установлены равными нулю – этим данный подход отличается от метода Пуассона, в котором предполагается, что сила становится равной нулю на бесконечности. Значение ф^ в центре | где e > 0, v – внешняя единичная нормаль, R представляет неподвижный контур, а D(x,y) – непрерывную функцию плотности. Граничные условия дф/dv = 0 диктуют, чтобы силы, направленные вовне неподвижного контура, были установлены равными нулю – этим данный подход отличается от метода Пуассона, в котором предполагается, что сила становится равной нулю на бесконечности. Значение ф^ в центре каждого контейнера Bij вычисляется посредством дискретизации уравнения (4) методом конечных разностей. Ограничения плотности заменяются требованием ф{^ = К, У Bij 2 B, где К – масштабированный представитель целевой функции плотности K. Задача минимизации длины проводов с учетом сглаженных ограничений плотности может быть решена при помощи алгоритма Узавы. В случае квадратичной функции длины провода этот алгоритм представляет собой обобщение метода распространения под действием силы. | ||
Распространение на основе потенциальной функции | Распространение на основе потенциальной функции | ||
Целевые ограничения плотности могут удовлетворяться также при помощи штрафной функции. Площадь, присвоенная | Целевые ограничения плотности могут удовлетворяться также при помощи штрафной функции. Площадь, присвоенная контейнеру Bij вершиной vi, представлена колоколообразной функцией Potential(vi ; Bij). Из-за использования кусочно-линейных квадратичных функций потенциальная функция оказывается невыпуклой, зато гладкой и дифференцируемой [6]. Штрафной член, задаваемый соотношением | ||
E | E | ||
vi2Vh | vi2Vh |
правка