Преобразование Барроуза-Уилера: различия между версиями

Перейти к навигации Перейти к поиску
Строка 119: Строка 119:
'''Лемма 1. Для i = 1, ... , n имеет место <math>F[i] = \hat{s}[ \Psi(i)] \;</math>.'''
'''Лемма 1. Для i = 1, ... , n имеет место <math>F[i] = \hat{s}[ \Psi(i)] \;</math>.'''


Доказательство. Поскольку каждая строка содержит циклический сдвиг строки s$, последним символом строки, префиксом которой является s[ki + 1, n - 1], является s[ki]. Из этого, согласно определению 1, следует s[&(i)] = s[ki] = F[i], что и требовалось доказать. □
Доказательство. Поскольку каждая строка содержит циклический сдвиг строки s$, последним символом строки, префиксом которой является <math>s[k_{i + 1}, n - 1] \;</math>, является <math>s[k_i] \;</math>. Из этого, согласно определению 1, следует <math>\hat{s} [\Psi(i)] = s[k_i] = F[i] \;</math>, что и требовалось доказать. □




'''Лемма 2. Если 1 < i < j < n и F[i] = F[j], то'''
'''Лемма 2. Если <math>1 \le i < j \le n \;</math> и F[i] = F[j], то <math>\Psi(i) < \Psi(j) \;</math>.'''


Доказательство. Пусть s[ki, n - 1] (соответственно, s[kj, n - 1]) обозначает суффикс s, являющийся перфиксом строки i (строки j, соответственно). Из гипотезы i < j следует, что s[ki, n - 1] -< s[kj,  n - 1]. Из гипотезы F[i] = F[j] следует, что s[ki] = s[kj], поскольку должно иметь место s[ki + 1, n - 1] -< s[kj + 1, n - 1]. Из этого следует утверждение леммы, поскольку по построению ^(i) (&(j), соответственно) является лексикографической позицией строки, префиксом которой является s[ki + 1, n - 1] (s[kj + 1, n - 1], соответственно). □
Доказательство. Пусть <math>s[k_i, n - 1] \;</math> (соответственно, <math>s[k_j, n - 1]) \;</math> обозначает суффикс s, являющийся префиксом строки i (строки j, соответственно). Из гипотезы i < j следует, что <math>s[k_i, n - 1] \prec s[k_j,  n - 1] \;</math>. Из гипотезы F[i] = F[j] следует, что <math>s[k_i] = s[k_j] \;</math>, поскольку должно иметь место <math>s[k_{i + 1}, n - 1] \prec s[k_{j + 1}, n - 1] \;</math>. Из этого следует утверждение леммы, поскольку по построению <math>\Psi(i) \;</math> (<math>\Psi(j) \;</math>, соответственно) является лексикографической позицией строки, префиксом которой является <math>s[k_{i + 1}, n - 1] \;</math> (<math>s[k_{j + 1}, n - 1] \;</math>, соответственно). □




4551

правка

Навигация