Двумерность: различия между версиями

Перейти к навигации Перейти к поиску
м
Строка 65: Строка 65:




Можно ли обобщить схемы аппроксимации с полиномиальным временем выполнения из теоремы 4 до алгоритмических задач более общего вида, не сопоставленных напрямую с двумерными параметрами? Один пример семейства подобных задач общего вида появляется при назначении вершинам и/или ребрам весов и необходимости вычислить, например, доминирующее множество с минимальным весом. Еще один пример такой задачи возникает при накладывании ограничений (например, на покрытие или доминирование) только на подмножества вершин и/или ребер. В качестве примеров таких задач можно привести алгоритмы построение дерева Штейнера и разрывающего множества вершин.
Можно ли обобщить схемы аппроксимации с полиномиальным временем выполнения из теоремы 4 до алгоритмических задач более общего вида, не сопоставленных напрямую с двумерными параметрами? Один пример семейства подобных задач общего вида появляется при назначении вершинам и/или ребрам весов и необходимости вычислить, например, доминирующее множество с минимальным весом. Еще один пример такой задачи возникает при накладывании ограничений (например, на покрытие или доминирование) только на подмножества вершин и/или ребер. В качестве примеров таких задач можно привести алгоритмы построения дерева Штейнера и разрывающего множества вершин.




4551

правка

Навигация