Минимальное время завершения для взвешенной системы: различия между версиями

Перейти к навигации Перейти к поиску
м
Строка 35: Строка 35:


== Открытые вопросы ==
== Открытые вопросы ==
Одна из основных нерешенных задач в этой области заключается в улучшении коэффициентов аппроксимации для планирования заданий с отношениями предшествования на несвязанных или связанных машинах. Следующие задачи заслуживают отдельного упоминания. Наилучшим известным решением задачи <math>1 | prec | \sum w_j C_j \;</math> является алгоритм 2-аппроксимации Холла и др. [8]; улучшение этого коэффициента остается главным открытым вопросом теории планирования. Задача <math>R | prec | \sum_j w_j C_j \;</math>, в которой отношения предшествования формируют произвольный ациклический граф, также представляет высокую важность: единственные результаты были получены для случая, когда отношения предшествования формируют цепи [6] или деревья [10].
Одна из основных нерешенных задач в этой области заключается в улучшении коэффициентов аппроксимации для планирования заданий с отношениями предшествования на несвязанных или связанных машинах. Следующие задачи заслуживают отдельного упоминания. Наилучшим известным решением задачи <math>1 | prec | \sum w_j C_j \;</math> является алгоритм 2-аппроксимации Холла и др. [8]; улучшение этого коэффициента остается главным открытым вопросом теории планирования. Задача <math>R | prec | \sum_j w_j C_j \;</math>, в которой отношения предшествования формируют произвольный ациклический граф, также представляет высокую важность: единственные известные результаты были получены для случая, когда отношения предшествования формируют цепи [6] или деревья [10].




4551

правка

Навигация