4551
правка
Irina (обсуждение | вклад) м (→Применение) |
Irina (обсуждение | вклад) |
||
Строка 42: | Строка 42: | ||
== Открытые вопросы == | == Открытые вопросы == | ||
Одна из основных нерешенных задач в этой области заключается в улучшении коэффициентов аппроксимации для планирования заданий с отношениями предшествования на несвязанных или связанных машинах. Следующие задачи заслуживают отдельного упоминания. Наилучшим известным решением задачи 1 jprecj P wjCj является алгоритм 2-аппроксимации Холла и др. [8]; улучшение этого коэффициента | Одна из основных нерешенных задач в этой области заключается в улучшении коэффициентов аппроксимации для планирования заданий с отношениями предшествования на несвязанных или связанных машинах. Следующие задачи заслуживают отдельного упоминания. Наилучшим известным решением задачи 1 jprecj P wjCj является алгоритм 2-аппроксимации Холла и др. [8]; улучшение этого коэффициента остается главным открытым вопросом теории планирования. Задача _R|prec| ^ wjCj, в которой отношения предшествования формируют произвольный ациклический граф, также представляет высокую важность: единственные результаты были получены для случая, когда отношения предшествования формируют цепи [6] или деревья [10]. | ||
Также неисследованным остается направление неаппроксимируемости – имеется немало серьезных пробелов между известными гарантиями аппроксимации и коэффициентами сложности для различных классов задач. Например, известно, что задачи Rj j P wj Cj и R j rj j P wj Cj являются | Также неисследованным остается направление неаппроксимируемости – имеется немало серьезных пробелов между известными гарантиями аппроксимации и коэффициентами сложности для различных классов задач. Например, известно, что задачи Rj j P wj Cj и R j rj j P wj Cj являются сложно-аппроксимируемыми, однако лучшие известные алгоритмы, предложенные Скутеллой [11], имеют коэффициента аппроксимации 3/2 и 2, соответственно. Устранение этих пробелов представляет собой важную задачу. | ||
== См. также == | == См. также == |
правка