Метрическая задача коммивояжера: различия между версиями

Перейти к навигации Перейти к поиску
м
нет описания правки
мНет описания правки
Строка 19: Строка 19:




Соответствующая задача носит название метрической задачи коммивояжера (Metric TSP). Для этой задачи существуют алгоритмы аппроксимации с константным коэффициентом. Отметим, что для решения метрической задачи коммивояжера достаточно найти обход, который посещает любую вершину не менее одного раза. При наличии такого обхода мы сможем найти гамильтонов обход с меньшим или равным весом за счет пропускания любой вершины, которую мы уже посещали. Согласно неравенству треугольника, вес нового обхода не может возрастать.
Соответствующая задача носит название метрической задачи коммивояжера (Metric TSP). Для этой задачи существуют алгоритмы аппроксимации с константным коэффициентом. Отметим, что для решения метрической задачи коммивояжера достаточно найти обход, который посещает любую вершину ''не менее'' одного раза. При наличии такого обхода мы сможем найти гамильтонов обход с меньшим или равным весом, просто пропуская любую вершину, которую мы уже посещали. Согласно неравенству треугольника, вес нового обхода не может возрастать.


== Основные результаты ==
== Основные результаты ==
Простой 2-аппроксимацией метрической задачи коммивояжера является алгоритм удвоения дерева. Он использует минимальные остовные деревья для вычисления гамильтоновых обходов. [[Остовное дерево]] T графа G = (V, E, w) представляет собой связный ациклический подграф G, содержащий все вершины E. Вес w(T) такого остовного дерева равен сумме весов его ребер, т.е. <math>w(T) = \sum_{e \in TH} w(e) \;</math>. Остовное дерево является минимальным, если его вес минимален среди всех остовных деревьев G. Можно эффективно вычислить минимальное остовное дерево, например, при помощи алгоритмов Прима или Крускала (см., например, [5]).
Простой 2-аппроксимацией метрической задачи коммивояжера является ''алгоритм удвоения дерева''. Он использует минимальные остовные деревья для вычисления гамильтоновых обходов. [[Остовное дерево]] T графа G = (V, E, w) представляет собой связный ациклический подграф G, содержащий все вершины V. Вес w(T) такого остовного дерева равен сумме весов его ребер, т.е. <math>w(T) = \sum_{e \in TH} w(e) \;</math>. Остовное дерево является минимальным, если его вес минимален среди всех остовных деревьев G. Можно эффективно вычислить минимальное остовное дерево, например, при помощи алгоритмов Прима или Крускала (см., например, [5]).




4551

правка

Навигация