4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) мНет описания правки |
||
Строка 19: | Строка 19: | ||
Соответствующая задача носит название метрической задачи коммивояжера (Metric TSP). Для этой задачи существуют алгоритмы аппроксимации с константным коэффициентом. Отметим, что для решения метрической задачи коммивояжера достаточно найти обход, который посещает любую вершину не менее одного раза. При наличии такого обхода мы сможем найти гамильтонов обход с меньшим или равным весом | Соответствующая задача носит название метрической задачи коммивояжера (Metric TSP). Для этой задачи существуют алгоритмы аппроксимации с константным коэффициентом. Отметим, что для решения метрической задачи коммивояжера достаточно найти обход, который посещает любую вершину ''не менее'' одного раза. При наличии такого обхода мы сможем найти гамильтонов обход с меньшим или равным весом, просто пропуская любую вершину, которую мы уже посещали. Согласно неравенству треугольника, вес нового обхода не может возрастать. | ||
== Основные результаты == | == Основные результаты == | ||
Простой 2-аппроксимацией метрической задачи коммивояжера является алгоритм удвоения дерева. Он использует минимальные остовные деревья для вычисления гамильтоновых обходов. [[Остовное дерево]] T графа G = (V, E, w) представляет собой связный ациклический подграф G, содержащий все вершины | Простой 2-аппроксимацией метрической задачи коммивояжера является ''алгоритм удвоения дерева''. Он использует минимальные остовные деревья для вычисления гамильтоновых обходов. [[Остовное дерево]] T графа G = (V, E, w) представляет собой связный ациклический подграф G, содержащий все вершины V. Вес w(T) такого остовного дерева равен сумме весов его ребер, т.е. <math>w(T) = \sum_{e \in TH} w(e) \;</math>. Остовное дерево является минимальным, если его вес минимален среди всех остовных деревьев G. Можно эффективно вычислить минимальное остовное дерево, например, при помощи алгоритмов Прима или Крускала (см., например, [5]). | ||
правка