4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 4: | Строка 4: | ||
Дано: полный неориентированный граф без циклов G = (V, E) и весовая функция w: E ! Q >o, присваивающая каждому ребру неотрицательный вес. | Дано: полный неориентированный граф без циклов G = (V, E) и весовая функция w: E ! Q >o, присваивающая каждому ребру неотрицательный вес. | ||
Допустимые решения: все гамильтоновы | Допустимые решения: все гамильтоновы обходы, т.е. подграфы H графа G, которые являются связными и каждая вершина которых имеет степень 2. | ||
Целевая функция: весовая функция w(H) = Pe2H w(e) | Целевая функция: весовая функция w(H) = Pe2H w(e) обхода. Цель: минимизация значения весовой функции. | ||
Задача коммивояжера представляет собой NP-полную задачу. Это означает, что для ее решения не существует алгоритма с полиномиальным временем выполнения, если только не окажется верным P = NP. Одним из способов разрешения этой проблемы являются алгоритмы аппроксимации. Алгоритм аппроксимации задачи TSP с полиномиальным временем выполнения называется алгоритмом a-аппроксимации, если | Задача коммивояжера представляет собой NP-полную задачу. Это означает, что для ее решения не существует алгоритма с полиномиальным временем выполнения, если только не окажется верным P = NP. Одним из способов разрешения этой проблемы являются алгоритмы аппроксимации. Алгоритм аппроксимации задачи TSP с полиномиальным временем выполнения называется алгоритмом a-аппроксимации, если обход H, полученный с его помощью, удовлетворяет неравенству w(H) < a ■ OPT(G). Здесь OPT(G) – вес обхода с минимальным весом для графа G. Если граф G понятен из контекста, можно записывать его просто в виде «OPT». Алгоритм a-аппроксимации всегда дает в итоге допустимое решение, целевое значение которого не более чем в a раз отличается от оптимального значения. a также называется коэффициентом аппроксимации или гирантией эффективности. a не обязательно должно быть константой; оно может быть функцией, зависящей от размера входного экземпляра или количества вершин n. | ||
Строка 16: | Строка 16: | ||
Соответствующая задача носит название метрической задачи коммивояжера (Metric TSP). Для этой задачи существуют алгоритмы аппроксимации с константным коэффициентом. Отметим, что для решения метрической задачи коммивояжера достаточно найти | Соответствующая задача носит название метрической задачи коммивояжера (Metric TSP). Для этой задачи существуют алгоритмы аппроксимации с константным коэффициентом. Отметим, что для решения метрической задачи коммивояжера достаточно найти обход, который посещает любую вершину не менее одного раза. При наличии такого обхода мы сможем найти гамильтонов обход с меньшим или равным весом за счет отбрасывания любой вершины, которую мы уже посещали. Согласно неравенству треугольника, вес нового обхода не может возрастать. | ||
== Основные результаты == | == Основные результаты == |
правка