Остовное дерево с максимальным количеством листьев: различия между версиями

Перейти к навигации Перейти к поиску
м
нет описания правки
Нет описания правки
мНет описания правки
Строка 50: Строка 50:


Цель (а): FPT-алгоритмы
Цель (а): FPT-алгоритмы


Задача заключается в нахождении правил предварительной обработки (кернелизации) с полиномиальным временем выполнения, где g(k) насколько возможно мало. Это будет важно впоследствии в контексте цели (б).
Задача заключается в нахождении правил предварительной обработки (кернелизации) с полиномиальным временем выполнения, где g(k) насколько возможно мало. Это будет важно впоследствии в контексте цели (б).
Строка 96: Строка 95:


Цель (б): предварительная обработка с полиномиальным временем выполнения и подпрограммы редукции данных
Цель (б): предварительная обработка с полиномиальным временем выполнения и подпрограммы редукции данных
Ниже приводится пример таблицы, используемой для отслеживания каждого возможного состояния границы для возможного решения. Можно привести примеры, демонстрирующие исключительно успешное каскадное применение правил редукции к реальным распределениям данных и описывающие разнообразие математических феноменов, относящихся к правилам редукции. Например, некоторые правила редукции – такие как правило разложения на составляющие Клейнмана-Веста для задачи МЛОД (рис. 2) – имеют фиксированный «размер границы» (в данном случае равный 2), тогда как правила редукции типа «корона» не имеют такового.
Ниже приводится пример таблицы, используемой для отслеживания каждого возможного состояния границы для возможного решения. Можно привести примеры, демонстрирующие исключительно успешное каскадное применение правил редукции к реальным распределениям данных и описывающие разнообразие математических феноменов, относящихся к правилам редукции. Например, некоторые правила редукции – такие как правило разложения на составляющие Клейнмана-Веста для задачи МЛОД (рис. 2) – имеют фиксированный «размер границы» (в данном случае равный 2), тогда как правила редукции типа «корона» не имеют такового.




Цель (в): градиенты и преобразования решений для локального поиска
Цель (в): градиенты и преобразования решений для локального поиска
Здесь приводится обобщение обычной формулировки для локального поиска, основанное на степени более сложного градиента в процессе получения более высоких границ кернелизации. Первая идея заключается в проведении локального поиска на основе поддержки «текущей структуры представления», а не полного решения (остовного дерева). Вторая идея состоит в использовании индуктивных приоритетов для определения градиента «лучшего решения» для локального поиска.
Здесь приводится обобщение обычной формулировки для локального поиска, основанное на степени более сложного градиента в процессе получения более высоких границ кернелизации. Первая идея заключается в проведении локального поиска на основе поддержки «текущей структуры представления», а не полного решения (остовного дерева). Вторая идея состоит в использовании индуктивных приоритетов для определения градиента «лучшего решения» для локального поиска.
4551

правка

Навигация