Вершинное покрытие и деревья поиска: различия между версиями

Перейти к навигации Перейти к поиску
м
(Отмена правки 11693, сделанной участником Irina (обс.))
Строка 10: Строка 10:




Формальное определение задачи выглядит следующим образом. Пусть G – неориентированный граф. Подмножество C вершин графа G является вершинным покрытием G, если хотя бы одна конечная точка каждого ребра G принадлежит к C. Пример (параметризованной) задачи о вершинном покрытии представляет собой пару (G, k), где G – граф, а k – целочисленный параметр; в задаче требуется определить, имеет ли граф G вершинное покрытие из k вершин. Наша цель заключается в разработке параметризованных алгоритмов с временем выполнения O(f(k)p(n)) для нахождения вершинного покрытия, где p(n) – полином более низкой степени от размера входного графа n, а f(k) – неполиномиальная часть, являющаяся функцией от параметра k и независимая от n. Ожидается, что неполиномиальная функция f(k) будет насколько возможно малой. Такой алгоритм будет эффективным на практике, если параметр k будет малым. Следует отметить, что за исключением редко встречающихся в теории сложности случаев функция f(k) является по меньшей мере экспоненциальной относительно параметра k [8].
Формальное определение задачи выглядит следующим образом. Пусть G – неориентированный граф. Подмножество C вершин графа G является [[вершинное покрытие|вершинным покрытием]] G, если хотя бы одна конечная точка каждого ребра G принадлежит к C. Пример (параметризованной) задачи о вершинном покрытии представляет собой пару (G, k), где G – граф, а k – целочисленный параметр; в задаче требуется определить, имеет ли граф G вершинное покрытие из k вершин. Наша цель заключается в разработке параметризованных алгоритмов с временем выполнения O(f(k)p(n)) для нахождения вершинного покрытия, где p(n) – полином более низкой степени от размера входного графа n, а f(k) – неполиномиальная часть, являющаяся функцией от параметра k и не зависящая от n. Ожидается, что неполиномиальная функция f(k) будет насколько возможно малой. Такой алгоритм будет эффективным на практике, если параметр k будет малым. Следует отметить, что за исключением редко встречающихся в теории сложности случаев функция f(k) является по меньшей мере экспоненциальной относительно параметра k [8].


== Основные результаты ==
== Основные результаты ==
4551

правка

Навигация