Деревья Штейнера: различия между версиями

Перейти к навигации Перейти к поиску
м
нет описания правки
мНет описания правки
 
(не показаны 3 промежуточные версии этого же участника)
Строка 1: Строка 1:
== Ключевые слова и синонимы ==
== Ключевые слова и синонимы ==
Разработка алгоритма аппроксимации
Разработка аппроксимационного алгоритма




== Определение ==
== Определение ==
Пусть дано множество точек, называемых полюсами, в метрическом пространстве. Задача заключается в нахождении кратчайшего дерева, связывающего все точки. В случае деревьев Штейнера используются три основных метрических пространства: евклидова плоскость, плоскость с прямолинейными расстояниями и сеть с взвешенными ребрами. Задачи построения [[дерево Штейнера|дерева Штейнера]] в этих метрических пространствах носят названия [[Евклидова задача Штейнера|евклидовой задачи Штейнера]] (Euclidean Steiner Tree, EST), ''прямолинейного дерева Штейнера'' (Rectilinear Steiner Tree, RST) и ''сетевого дерева Штейнера'' (Network Steiner Tree, NST), соответственно. Было обнаружено, что для EST и RST имеются схемы аппроксимации с полиномиальным временем выполнения (PTAS) при помощи адаптивного разбиения. Однако для NST существует положительное число r, такое, что вычисление r-аппроксимации является NP-полной задачей. До настоящего момента лучший коэффициент эффективности для аппроксимации NST с полиномиальным временем выполнения был получен при помощи k-ограниченных деревьев Штейнера. Однако на практике очень часто используется итеративное 1-дерево Штейнера. Фактически итеративное 1-дерево Штейнера уже давно предлагалось в качестве кандидата на хорошую аппроксимацию минимальных деревьев Штейнера. Оно отлично проявило себя в компьютерных экспериментах, однако не было проведено корректного анализа, который показал бы, что коэффициент эффективности итеративного 1-дерева Штейнера превосходит коэффициент эффективности минимального остовного дерева. Недавно такую работу проделали Ду и коллеги [9]. Небольшое различие в построении 3-ограниченного дерева Штейнера и итеративного 1-дерева Штейнера приводит к значительному различию при анализе этих двух типов деревьев. В чем заключается сложность такого анализа? Это будет описано ниже.
Пусть дано множество точек, называемых полюсами, в метрическом пространстве. Задача заключается в нахождении кратчайшего дерева, связывающего все точки. В случае деревьев Штейнера используются три основных метрических пространства: евклидова плоскость, плоскость с прямолинейными расстояниями и сеть с взвешенными ребрами. Задачи построения [[дерево Штейнера|дерева Штейнера]] в этих метрических пространствах носят названия [[Евклидова задача Штейнера|евклидовой задачи Штейнера]] (Euclidean Steiner Tree, EST), ''прямолинейного дерева Штейнера'' (Rectilinear Steiner Tree, RST) и ''сетевого дерева Штейнера'' (Network Steiner Tree, NST), соответственно. Было обнаружено, что для EST и RST имеются аппроксимационные схемы с полиномиальным временем выполнения (PTAS) при помощи адаптивного разбиения. Однако для NST существует положительное число r, такое, что вычисление r-аппроксимации является NP-полной задачей. До настоящего момента лучший коэффициент эффективности для аппроксимации NST с полиномиальным временем выполнения был получен при помощи k-ограниченных деревьев Штейнера. Однако на практике очень часто используется итеративное 1-дерево Штейнера. Фактически итеративное 1-дерево Штейнера уже давно предлагалось в качестве кандидата на хорошую аппроксимацию минимальных деревьев Штейнера. Оно отлично проявило себя в компьютерных экспериментах, однако не было проведено корректного анализа, который показал бы, что коэффициент эффективности итеративного 1-дерева Штейнера превосходит коэффициент эффективности минимального остовного дерева. Недавно такую работу проделали Ду и коллеги [9]. Небольшое различие в построении 3-ограниченного дерева Штейнера и итеративного 1-дерева Штейнера приводит к значительному различию при анализе этих двух типов деревьев. В чем заключается сложность такого анализа? Это будет описано ниже.


== История и предпосылки ==
== История и предпосылки ==
Строка 49: Строка 49:




В дереве Штейнера полюс может иметь степень больше единицы. Можно провести декомпозицию дерева Штейнера, разбив все вершины со степенью больше 1 на меньшие деревья, в которых каждый полюс является листом. В такой декомпозиции каждое полученное маленькое дерево называется [[полный компонент|полным компонентом]]. Размер полного компонента равен количеству содержащихся в нем полюсов. Дерево Штейнера является k-ограниченным, если каждый его полный компонент имеет размер не более k. Кратчайшее k-ограниченное дерево Штейнера также называется k-ограниченным [[минимальное дерево Штейнера|минимальным деревом Штейнера]]. Обозначим его длину за <math>smt_k(P) \;</math>. Очевидно, что <math>smt_2(P) \;</math> – длина минимального остовного дерева на P, также обозначаемая как mst(P). Пусть smt(P) обозначает длину минимального дерева Штейнера на P. Если значение <math>smt_3(P) \;</math> можно вычислить за полиномиальное время, то этот способ лучше подходит для аппроксимации smt(P) по сравнению с mst(P). Однако до сих пор для <math>smt_3(P) \;</math> не было найдено аппроксимации с полиномиальным временем. Поэтому Зеликовский [14] использовал жадную аппроксимацию <math>smt_3(P) \;</math> для аппроксимации smt(P). Чанг [4, 5] использовал похожий жадный алгоритм для вычисления итеративного 1-дерева Штейнера. Пусть <math>\mathcal{F} \;</math> – семейство подграфов исходного графа G с взвешенными ребрами. Для любого связного подграфа H обозначим за mst(H) длину минимального остовного дерева H, а за mst(H) – сумму mst(H') для H' по всем связным компонентам H для любого подграфа H.
В дереве Штейнера полюс может иметь степень больше единицы. Можно провести декомпозицию дерева Штейнера, разбив все вершины со степенью больше 1 на меньшие деревья, в которых каждый полюс является листом. В такой декомпозиции каждое полученное маленькое дерево называется [[полный компонент|полным компонентом]]. Размер полного компонента равен количеству содержащихся в нем полюсов. Дерево Штейнера является k-ограниченным, если каждый его полный компонент имеет размер не более k. Кратчайшее k-ограниченное дерево Штейнера также называется k-ограниченным [[минимальное дерево Штейнера|минимальным деревом Штейнера]]. Обозначим его длину за <math>smt_k(P) \;</math>. Очевидно, что <math>smt_2(P) \;</math> – длина минимального остовного дерева на P, также обозначаемая как mst(P). Пусть smt(P) обозначает длину минимального дерева Штейнера на P. Если значение <math>smt_3(P) \;</math> можно вычислить за полиномиальное время, то этот способ лучше подходит для аппроксимации smt(P) по сравнению с mst(P). Однако до сих пор для <math>smt_3(P) \;</math> не было найдено аппроксимации с полиномиальным временем. Поэтому Зеликовский [14] использовал жадную аппроксимацию <math>smt_3(P) \;</math> для аппроксимации smt(P). Чанг [4, 5] использовал похожий жадный алгоритм для вычисления итеративного 1-дерева Штейнера. Пусть <math>\mathcal{F} \;</math> – семейство подграфов исходного графа G с взвешенными ребрами. Для любого связного подграфа H обозначим за mst(H) длину минимального остовного дерева H, а за mst(H) – сумму mst(H') для H' по всем связным компонентам для любого подграфа H.




Строка 64: Строка 64:




Если множество <math>\mathcal{F} \;</math> состоит из всех полных компонентов размером не более 3, этот жадный алгоритм дает на выходе 3-ограниченное дерево Штейнера, введенное Зеликовским [14]. Если <math>\mathcal{F} \;</math> состоит из всех трехлучевых звезд и всех ребер, где трехлучевая звезда представляет собой дерево с 3 листьями и центральной вершиной, то жадный алгоритм дает на выходе итеративное 1-дерево Штейнера. Интересный факт, на которой обратили внимание Ду и коллеги [9], заключается в том, что функция gain(<math>\cdot</math>) является субмодулярной над всеми полными компонентами размера не более 3, но не является субмодулярной над всеми трехлучевыми звездами и всеми ребрами.
Если множество <math>\mathcal{F} \;</math> состоит из всех полных компонентов размером не более 3, этот жадный алгоритм дает на выходе 3-ограниченное дерево Штейнера, введенное Зеликовским [14]. Если <math>\mathcal{F} \;</math> состоит из всех трехлучевых звезд и всех ребер (где трехлучевая звезда представляет собой дерево с 3 листьями и центральной вершиной), то этот жадный алгоритм дает на выходе итеративное 1-дерево Штейнера. Интересный факт, на которой обратили внимание Ду и коллеги [9], заключается в том, что функция gain(<math>\cdot</math>) является субмодулярной над всеми полными компонентами размера не более 3, но не является субмодулярной над всеми трехлучевыми звездами и ребрами.




Строка 81: Строка 81:




Доказательство. Предположим, что f является субмодулярной. Положим <math>B = A \cup \{ x \} \;</math> и <math>C = A \cup \{ y \} \;</math>. Тогда <math>B \cup C = A \cup A \cup \{ x, y \} \;</math> и <math>B \cap C = A \;</math>. Следовательно, должно иметь место
Доказательство. Предположим, что f является субмодулярной. Положим <math>B = A \cup \{ x \} \;</math> и <math>C = A \cup \{ y \} \;</math>. Тогда <math>B \cup C = A \cup A \cup \{ x, y \} \;</math> и <math>B \cap C = A \;</math>. Следовательно, имеет место


<math>f(A \cup \{ x, y \}) - f(A \cup \{ x \}) - f(A \cup \{ y \})  + f(A) \le 0 \;</math>,
<math>f(A \cup \{ x, y \}) - f(A \cup \{ x \}) - f(A \cup \{ y \})  + f(A) \le 0 \;</math>,
Строка 151: Строка 151:


Рисунок 2.
Рисунок 2.


== Применение ==
== Применение ==
4501

правка

Навигация