Деревья Штейнера: различия между версиями

Перейти к навигации Перейти к поиску
м
Строка 64: Строка 64:




Если множество <math>\mathcal{F} \;</math> состоит из всех полных компонентов размером не более 3, этот жадный алгоритм дает на выходе 3-ограниченное дерево Штейнера, введенное Зеликовским [14]. Если <math>\mathcal{F} \;</math> состоит из всех трехлучевых звезд и всех ребер, где трехлучевая звезда представляет собой дерево с 3 листьями и центральной вершиной, то жадный алгоритм дает на выходе итеративное 1-дерево Штейнера. Интересный факт, на которой обратили внимание Ду и коллеги [ ], заключается в том, что функция gain(<math>\cdot</math>) является субмодулярной над всеми полными компонентами размера не более 3, но не является субмодулярной над всеми трехлучевыми звездами и всеми ребрами.
Если множество <math>\mathcal{F} \;</math> состоит из всех полных компонентов размером не более 3, этот жадный алгоритм дает на выходе 3-ограниченное дерево Штейнера, введенное Зеликовским [14]. Если <math>\mathcal{F} \;</math> состоит из всех трехлучевых звезд и всех ребер, где трехлучевая звезда представляет собой дерево с 3 листьями и центральной вершиной, то жадный алгоритм дает на выходе итеративное 1-дерево Штейнера. Интересный факт, на которой обратили внимание Ду и коллеги [9], заключается в том, что функция gain(<math>\cdot</math>) является субмодулярной над всеми полными компонентами размера не более 3, но не является субмодулярной над всеми трехлучевыми звездами и всеми ребрами.




Строка 76: Строка 76:




'''Лемма 1.''' Функция f является субмодулярной в том и только том случае, если для любых <math>A \subset E \;</math> и различных <math>x, y \in E - A \;</math> выполняется
'''Лемма 1.''' Функция f является субмодулярной в том и только том случае, если для любых <math>A \subset E \;</math> и различных <math>x, y \in E - A \;</math> выполняется соотношение


(1) <math>\Delta_x \; \Delta_y \; f(A) \le 0</math>
(1) <math>\Delta_x \; \Delta_y \; f(A) \le 0</math>




Доказательство. Предположим, что f является субмодулярной. Положим <math>B = A \cup \{ x \} \;</math> и <math>C = A \cup \{ y \} \;</math>. Тогда <math>B \cup C = A \cup A \cup \{ x, y \} \;</math> и <math>В \cap C = A \;</math>. Следовательно, должно иметь место
Доказательство. Предположим, что f является субмодулярной. Положим <math>B = A \cup \{ x \} \;</math> и <math>C = A \cup \{ y \} \;</math>. Тогда <math>B \cup C = A \cup A \cup \{ x, y \} \;</math> и <math>B \cap C = A \;</math>. Следовательно, должно иметь место


<math>f(A \cup \{ x, y \}) - f(A \cup \{ x \}) - f(A \cup \{ y \})  + f(A) \le 0 \;</math>,
<math>f(A \cup \{ x, y \}) - f(A \cup \{ x \}) - f(A \cup \{ y \})  + f(A) \le 0 \;</math>,
Строка 104: Строка 104:
Доказательство. Заметим, что для любых двух различных ребер x и y, не принадлежащих подграфу H,
Доказательство. Заметим, что для любых двух различных ребер x и y, не принадлежащих подграфу H,


<math>\Delta_x \Delta f(H) = -mst(P : H \; \cup \; x \; \cup \; y) + mst(P : H \; \cup \; x) + mst(P : H \; \cup \; y) - mst(P : H) = (mst(P : H) - mst(P : H \; \cup x \; \cup \; y)) - (mst(P : H) - mst(P : H \; \cup \; x)) + (mst(P : H) - mst(P : H \; \cup \; y))</math>.
<math>\Delta_x \Delta_y f(H) = -mst(P : H \; \cup \; x \; \cup \; y) + mst(P : H \; \cup \; x) + mst(P : H \; \cup \; y) - mst(P : H) = (mst(P : H) - mst(P : H \; \cup x \; \cup \; y)) - (mst(P : H) - mst(P : H \; \cup \; x)) + (mst(P : H) - mst(P : H \; \cup \; y))</math>.




Строка 114: Строка 114:




Значение <math>mst(P : H) mst(P : H \; \cup \; x \; \cup \; y)</math> можно вычислить следующим образом: выберем самое длинное ребро e' из <math>P_x \cup P_y</math>. Заметим, что <math>T \cup x \cup y - e'</math> содержит уникальный цикл Q. Выберем самое длинное ребро e'' из <math>(P_x \cup P_y) \cap Q</math>. Тогда
Значение <math>mst(P : H) - mst(P : H \; \cup \; x \; \cup \; y)</math> можно вычислить следующим образом: выберем самое длинное ребро e' из <math>P_x \cup P_y</math>. Заметим, что <math>T \cup x \cup y - e'</math> содержит уникальный цикл Q. Выберем самое длинное ребро e" из <math>(P_x \cup P_y) \cap Q</math>. Тогда


<math>mst(P : H) - mst(P : H \cup x \cup y) = length(e') + length(e'')</math>.
<math>mst(P : H) - mst(P : H \cup x \cup y) = length(e') + length(e'')</math>.
4551

правка

Навигация