4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 45: | Строка 45: | ||
== Основные результаты == | == Основные результаты == | ||
Рассмотрим входной граф с взвешенными ребрами G = (V, E) для задачи построения NST (сетевого дерева Штейнера). Предположим, что G – полный граф и что веса ребер удовлетворяют неравенству треугольника. В противном случае рассмотрим полный граф на V, в котором каждое ребро (u, v) имеет вес, равный длине кратчайшего пути между u и v в графе G. Пусть дано множество полюсов P; деревом Штейнера является дерево, связывающее все указанные полюса таким образом, что каждый лист является полюсом. | Рассмотрим входной граф с взвешенными ребрами G = (V, E) для задачи построения NST (сетевого дерева Штейнера). Предположим, что G – полный граф и что веса ребер удовлетворяют неравенству треугольника. В противном случае рассмотрим полный граф на V, в котором каждое ребро (u, v) имеет вес, равный длине кратчайшего пути между u и v в графе G. Пусть дано множество полюсов P; [[дерево Штейнера|деревом Штейнера]] является дерево, связывающее все указанные полюса таким образом, что каждый лист является полюсом. | ||
В дереве Штейнера полюс может иметь степень больше единицы. Можно провести декомпозицию дерева Штейнера, разбив все вершины со степенью больше 1 на меньшие деревья, в которых каждый полюс является листом. В такой декомпозиции каждое полученное маленькое дерево называется полным компонентом. Размер полного компонента равен количеству содержащихся в нем полюсов. Дерево Штейнера является k-ограниченным, если каждый его полный компонент имеет размер не более k. Кратчайшее k-ограниченное дерево Штейнера также называется k-ограниченным минимальным деревом Штейнера. Обозначим его длину за | В дереве Штейнера полюс может иметь степень больше единицы. Можно провести декомпозицию дерева Штейнера, разбив все вершины со степенью больше 1 на меньшие деревья, в которых каждый полюс является листом. В такой декомпозиции каждое полученное маленькое дерево называется [[полный компонент|полным компонентом]]. Размер полного компонента равен количеству содержащихся в нем полюсов. Дерево Штейнера является k-ограниченным, если каждый его полный компонент имеет размер не более k. Кратчайшее k-ограниченное дерево Штейнера также называется k-ограниченным [[минимальное дерево Штейнера|минимальным деревом Штейнера]]. Обозначим его длину за <math>smt_k(P) \;</math>. Очевидно, что <math>smt_2(P) \;</math> – длина минимального остовного дерева на P, также обозначаемая как mst(P). Пусть smt(P) обозначает длину минимального дерева Штейнера на P. Если значение <math>smt_3(P) \;</math> можно вычислить за полиномиальное время, то этот способ лучше подходит для аппроксимации smt(P) по сравнению с mst(P). Однако до сих пор для <math>smt_3(P) \;</math> не было найдено аппроксимации с полиномиальным временем. Поэтому Зеликовский [14] использовал жадную аппроксимацию <math>smt_3(P) \;</math> для аппроксимации smt(P). Чанг [4, 5] использовал похожий жадный алгоритм для вычисления итеративного 1-дерева Штейнера. Пусть F – семейство подграфов исходного графа G с взвешенными ребрами. Для любого связного подграфа H обозначим за mst(H) длину минимального остовного дерева H, а за mst(H) – сумму mst(H0) для H0 по всем связным компонентам H для любого подграфа H. | ||
Определим | Определим | ||
gain(H) = mst(P) - mst(P : H) - mst(H) ; | gain(H) = mst(P) - mst(P : H) - mst(H) ; | ||
Строка 131: | Строка 131: | ||
Пусть F – множество трехлучевых звезд и ребер, выбранных жадным алгоритмом для вычисления итеративного 1-дерева Штейнера. Тогда gain(-) может и не быть субмодулярной на F . Чтобы убедиться в этом, рассмотрим две трехлучевых звезды x и y на рис. 2. Заметим, что gain(x [ y) > gain(x);gain(y) < 0 и gain(;) = 0. Наблюдается | Пусть F – множество трехлучевых звезд и ребер, выбранных жадным алгоритмом для вычисления итеративного 1-дерева Штейнера. Тогда gain(-) может и не быть субмодулярной на F . Чтобы убедиться в этом, рассмотрим две трехлучевых звезды x и y на рис. 2. Заметим, что gain(x [ y) > gain(x);gain(y) < 0 и gain(;) = 0. Наблюдается | ||
gain(x [ y) — gain(x) — gain(y) + gain(;) > 0 : | gain(x [ y) — gain(x) — gain(y) + gain(;) > 0 : | ||
== Применение == | == Применение == |
правка