4551
правка
Irina (обсуждение | вклад) мНет описания правки |
Irina (обсуждение | вклад) |
||
Строка 8: | Строка 8: | ||
== История и предпосылки == | == История и предпосылки == | ||
Задача построения дерева Штейнера была предложена Карлом Фридрихом Гауссом в 1835 году в виде обобщения задачи Ферма. Пусть даны три точки A, B и C на евклидовой плоскости. Ферма изучал задачу нахождения точки S, для которой |SA| + |SB| + |SC| будет минимально. Он обнаружил, что в случае, когда все три внутренних угла треугольника ABC имеют величину менее 120°, оптимальная точка S должна находится в положении | Задача построения дерева Штейнера была предложена Карлом Фридрихом Гауссом в 1835 году в виде обобщения задачи Ферма. Пусть даны три точки A, B и C на евклидовой плоскости. Ферма изучал задачу нахождения точки S, для которой |SA| + |SB| + |SC| будет минимально. Он обнаружил, что в случае, когда все три внутренних угла треугольника ABC имеют величину менее 120°, оптимальная точка S должна находится в положении <math>\angle ASB = \angle BSC = \angle CSA = 120^{\circ} \;</math>. | ||
Строка 33: | Строка 33: | ||
Хорошо известной задачей является гипотеза Гилберта-Поллака об отношении Штейнера, представляющем собой минимальное отношение длин между минимальным деревом Штейнера и минимальным остовным деревом для того же множества точек. Гилберт и Поллак в 1968 году предположили, что отношение Штейнера на евклидовой плоскости равно | Хорошо известной задачей является гипотеза Гилберта-Поллака об отношении Штейнера, представляющем собой минимальное отношение длин между минимальным деревом Штейнера и минимальным остовным деревом для того же множества точек. Гилберт и Поллак в 1968 году предположили, что отношение Штейнера на евклидовой плоскости равно <math>\sqrt{3/2} \;</math> и достигается для трех вершин равностороннего треугольника. Доказательству этой гипотезы было посвящено множество работ, в конечном итоге ее доказали Ду и Хван [7]. | ||
Еще одной важной задачей является задача лучшей аппроксимации. Довольно долгое время не удавалось доказать наличие аппроксимации с коэффициентом эффективности меньше обратного значения отношения Штейнера. Первый прорыв совершил Зеликовский [ ], который нашел 11/6-аппроксимацию с полиномиальным временем выполнения для задачи NST, что лучше 1/2 – обратного значения отношения Штейнера для сети с взвешенными ребрами. Позднее Берман и Рамайе [ ] предложили 92/72-аппроксимацию с полиномиальным временем выполнения для RST, а Ду, Цзян и Фэн [8] закрыли тему, показав, что в любом метрическом пространстве существует аппроксимация с полиномиальным временем выполнения с коэффициентом эффективности меньше обратного значения отношения Штейнера, при условии, что для любого множества с фиксированным количеством точек его дерево Штейнера вычислимо за полиномиальное время. | Еще одной важной задачей является задача [[лучшая аппроксимация|лучшей аппроксимации]]. Довольно долгое время не удавалось доказать наличие аппроксимации с коэффициентом эффективности меньше обратного значения отношения Штейнера. Первый прорыв совершил Зеликовский [14], который нашел 11/6-аппроксимацию с полиномиальным временем выполнения для задачи NST, что лучше 1/2 – обратного значения отношения Штейнера для сети с взвешенными ребрами. Позднее Берман и Рамайе [2] предложили 92/72-аппроксимацию с полиномиальным временем выполнения для RST, а Ду, Цзян и Фэн [8] закрыли тему, показав, что в любом метрическом пространстве существует аппроксимация с полиномиальным временем выполнения с коэффициентом эффективности меньше обратного значения отношения Штейнера, при условии, что для любого множества с фиксированным количеством точек его дерево Штейнера вычислимо за полиномиальное время. | ||
Строка 43: | Строка 43: | ||
Анализ итеративного 1-дерева Штейнера также долго время оставался нерешенной задачей. С тех пор как Чанг [4, 5] в 1972 году предположил, что итеративное 1-дерево Штейнера аппроксимирует минимальное дерево Штейнера, его эффективность в тщательно проведенных компьютерных экспериментах оказалась весьма высокой [10, 13], однако подкреплений со стороны теоретического анализа этому утверждению до сих пор не найдено. Фактически и k-ограниченное дерево Штейнера, и итеративное 1-дерево Штейнера строятся при помощи жадных алгоритмов, но с различными типами гармонических функций. В случае итеративного 1-дерева Штейнера гармоническая функция не является субмодулярной, тогда как в случае k-ограниченного дерева Штейнера она является таковой; свойство, выполняющееся для второго типа деревьев, может оказаться неверным для первого. Оказывается, что субмодулярность гармонической функции исключительно важна для анализа жадных аппроксимаций [11]. Ду и др. [9] дали точный анализ для итеративного 1-дерева Штейнера при помощи обобщенной техники обработки несубмодулярной гармонической функции. | Анализ итеративного 1-дерева Штейнера также долго время оставался нерешенной задачей. С тех пор как Чанг [4, 5] в 1972 году предположил, что итеративное 1-дерево Штейнера аппроксимирует минимальное дерево Штейнера, его эффективность в тщательно проведенных компьютерных экспериментах оказалась весьма высокой [10, 13], однако подкреплений со стороны теоретического анализа этому утверждению до сих пор не найдено. Фактически и k-ограниченное дерево Штейнера, и итеративное 1-дерево Штейнера строятся при помощи жадных алгоритмов, но с различными типами гармонических функций. В случае итеративного 1-дерева Штейнера гармоническая функция не является субмодулярной, тогда как в случае k-ограниченного дерева Штейнера она является таковой; свойство, выполняющееся для второго типа деревьев, может оказаться неверным для первого. Оказывается, что субмодулярность гармонической функции исключительно важна для анализа жадных аппроксимаций [11]. Ду и др. [9] дали точный анализ для итеративного 1-дерева Штейнера при помощи обобщенной техники обработки несубмодулярной гармонической функции. | ||
== Основные результаты == | == Основные результаты == |
правка