Деревья Штейнера: различия между версиями

Перейти к навигации Перейти к поиску
(Новая страница: «== Ключевые слова и синонимы == Разработка алгоритма аппроксимации == Определение == Пусть…»)
 
Строка 143: Строка 143:


== См. также ==
== См. также ==
'' *[[Алгоритмы жадной аппроксимации]]
* ''[[Алгоритмы жадной аппроксимации]]
Минимальные остовные деревья
* ''[[Минимальные остовные деревья]]
Прямолинейное дерево Штейнера
* ''Прямолинейное дерево Штейнера]]


Литература
 
== Литература ==
1. Arora, S.: Polynomial-time approximation schemes for Euclidean TSP and other geometric problems. Proc. 37th IEEE Symp. on Foundations of Computer Science, pp. 2-12 (1996)
1. Arora, S.: Polynomial-time approximation schemes for Euclidean TSP and other geometric problems. Proc. 37th IEEE Symp. on Foundations of Computer Science, pp. 2-12 (1996)
2. Berman, P., Ramaiyer, V.: Improved approximations for the Steiner tree problem. J. Algorithms 17, 381^08(1994)
2. Berman, P., Ramaiyer, V.: Improved approximations for the Steiner tree problem. J. Algorithms 17, 381^08(1994)
3. Bern, M., Plassmann,  P.: The Steiner  problem  with  edge lengths 1 and 2. Inf. Proc. Lett. 32,171 -176 (1989)
3. Bern, M., Plassmann,  P.: The Steiner  problem  with  edge lengths 1 and 2. Inf. Proc. Lett. 32,171 -176 (1989)
4. Chang, S.K.: The generation of minimal trees with a Steiner topology. J.ACM 19,699-711 (1972)
4. Chang, S.K.: The generation of minimal trees with a Steiner topology. J.ACM 19,699-711 (1972)
5. Chang, S.K.: The design of network configurations with linear or piecewise linear cost functions. In: Symp. on Computer-Communications, Networks, and Teletraffic, pp. 363-369 IEEE Computer Society Press, California (1972)
5. Chang, S.K.: The design of network configurations with linear or piecewise linear cost functions. In: Symp. on Computer-Communications, Networks, and Teletraffic, pp. 363-369 IEEE Computer Society Press, California (1972)
6. Crourant, R., Robbins, H.: What Is Mathematics? Oxford University Press, New York (1941)
6. Crourant, R., Robbins, H.: What Is Mathematics? Oxford University Press, New York (1941)
7. Du, D.Z., Hwang, F.K.: The Steiner ratio conjecture of Gilbert-Pollak is true. Proc. Natl. Acad. Sci. USA 87,9464-9466 (1990)
7. Du, D.Z., Hwang, F.K.: The Steiner ratio conjecture of Gilbert-Pollak is true. Proc. Natl. Acad. Sci. USA 87,9464-9466 (1990)
8. Du, D.Z., Zhang, Y., Feng, Q.: On better heuristic for euclidean Steiner minimum trees. In: Proceedings 32nd FOCS, IEEE Computer Society Press, California (1991)
8. Du, D.Z., Zhang, Y., Feng, Q.: On better heuristic for euclidean Steiner minimum trees. In: Proceedings 32nd FOCS, IEEE Computer Society Press, California (1991)
9. Du, D.Z., Graham, R.L., Pardalos, P.M., Wan, P.J., Wu, W., Zhao, W.: Analysis of greedy approximations with nonsubmodular potential functions. In: Proceedings of 19th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 167-175. ACM, New York (2008)
9. Du, D.Z., Graham, R.L., Pardalos, P.M., Wan, P.J., Wu, W., Zhao, W.: Analysis of greedy approximations with nonsubmodular potential functions. In: Proceedings of 19th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 167-175. ACM, New York (2008)
10. Kahng, A., Robins, G.: A new family of Steiner tree heuristics with good performance: the iterated 1-Steiner approach. In: Proceedings of IEEE Int. Conf. on Computer-Aided Design, Santa Clara, pp.428-431 (1990)
10. Kahng, A., Robins, G.: A new family of Steiner tree heuristics with good performance: the iterated 1-Steiner approach. In: Proceedings of IEEE Int. Conf. on Computer-Aided Design, Santa Clara, pp.428-431 (1990)
11. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2, 385-393 (1982)
11. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2, 385-393 (1982)
12. Robin, G., Zelikovsky, A.: Improved Steiner trees approximation in graphs. In: SIAM-ACM Symposium on Discrete Algorithms (SODA), San Francisco, CA, pp. 770-779. January (2000)
12. Robin, G., Zelikovsky, A.: Improved Steiner trees approximation in graphs. In: SIAM-ACM Symposium on Discrete Algorithms (SODA), San Francisco, CA, pp. 770-779. January (2000)
13. Smith, J.M., Lee, D.T., Liebman, J.S.: An O(N log N) heuristic for Steiner minimal tree problems in the Euclidean metric. Networks 11, 23-39 (1981)
13. Smith, J.M., Lee, D.T., Liebman, J.S.: An O(N log N) heuristic for Steiner minimal tree problems in the Euclidean metric. Networks 11, 23-39 (1981)
14. Zelikovsky, A.Z.: The 11/6-approximation algorithm for the Steiner problem on networks. Algorithmica 9,463^70 (1993)
14. Zelikovsky, A.Z.: The 11/6-approximation algorithm for the Steiner problem on networks. Algorithmica 9,463^70 (1993)
4551

правка

Навигация