Разреженные остовы графов: различия между версиями

Перейти к навигации Перейти к поиску
 
(не показаны 3 промежуточные версии 1 участника)
Строка 9: Строка 9:




Важной составляющей построения остова в [6] является разбиение графа на области меньшего диаметра таким образом, чтобы суперграф, порожденный этими областями, был разреженным. Исследование таких разбиений было инициировано Авербухом [2], использовавшим их для синхронизации сетей. Пелег и Шеффер [8] первыми использовали подобные разбиения для построения остовов. В частности, они построили <math>(O(\kappa), \; 1)</math>-остовы с <math>O(n^{1 + 1/ \kappa }) \;</math> ребрами. Альтхофер и др. [1] предложили альтернативное доказательство результата Пелега и Шеффера, использующее элегантный «жадный» аргумент. При помощи этого аргумента Альтхоферу и коллегам также удалось расширить свой результат на взвешенные графы, что позволило улучшить скрытую в O-нотации константу в алгоритме Пелега и Шеффера и получить сопутствующие результаты для планарных графов.
Важной составляющей построения остова в [6] является разбиение графа на области меньшего диаметра таким образом, чтобы [[суперграф]], порожденный этими областями, был разреженным. Исследование таких разбиений было инициировано Авербухом [2], использовавшим их для синхронизации сетей. Пелег и Шеффер [8] первыми применили подобные разбиения для построения остовов. В частности, они построили <math>(O(\kappa), \; 1)</math>-остовы с <math>O(n^{1 + 1/ \kappa }) \;</math> ребрами. Альтхофер и др. [1] предложили альтернативное доказательство результата Пелега и Шеффера, использующее элегантный «жадный» подход. При помощи этого подхода Альтхоферу и коллегам также удалось расширить свой результат на взвешенные графы, что позволило улучшить скрытую в O-нотации константу в алгоритме Пелега и Шеффера и получить сопутствующие результаты для планарных графов.


== Применение ==
== Применение ==
Строка 49: Строка 49:


12. Woodruff, D.: Lower Bounds for Additive Spanners, Emulators, and More. In: Proc. of Symp. on Foundations of Computer Science, Berckeley, Oct. 2006, pp. 389-398
12. Woodruff, D.: Lower Bounds for Additive Spanners, Emulators, and More. In: Proc. of Symp. on Foundations of Computer Science, Berckeley, Oct. 2006, pp. 389-398
[[Категория: Совместное определение связанных терминов]]

Навигация