Разреженные остовы графов: различия между версиями

Перейти к навигации Перейти к поиску
Строка 3: Строка 3:


== Постановка задачи ==
== Постановка задачи ==
Для пары чисел a, f$, a > 1, f$ > 0, подграф G0 = (V, H) невзвешенного неориентированного графа G = (V, E), H С E, является (a, /S)-остовом G, если для каждой пары вершин u, w 2 V distG0 (u, w) < a-disto(u, w)+P, где distG (u, w) обозначает расстояние между u и w в G. Мы хотим показать, что для каждого n-вершинного графа существует разреженный (a, /3)-остов с настолько малыми значениями a и f$, насколько это возможно. Задача заключается в нахождении асимптотического компромисса между a и f$, с одной стороны, и разреженностью остова – с другой.
Для пары чисел <math>\alpha, \beta, \alpha \ge 1, \beta \ge 0 \;</math>, подграф <math>G' = (V, H) \;</math> невзвешенного неориентированного графа <math>G = (V, E), H \subseteq E \;</math>, является <math>(\alpha, \; \beta)</math>-остовом G, если для каждой пары вершин <math>u, w \in V \;</math> выполняется <math>dist_{G'} (u, w) \le \alpha \cdot dist_G (u, w) + \beta \;</math>, где distG (u, w) обозначает расстояние между u и w в G. Мы хотим показать, что для каждого n-вершинного графа существует разреженный <math>(\alpha, \; \beta)</math>-остов с настолько малыми значениями <math>\alpha \;a</math> и <math>\beta \;</math>, насколько это возможно. Задача заключается в нахождении асимптотического компромисса между <math>\alpha \;a</math> и <math>\beta \;</math>, с одной стороны, и разреженностью остова – с другой.
 


== Основные результаты ==
== Основные результаты ==
4501

правка

Навигация