Кластеризация на основе эффективности: различия между версиями

Перейти к навигации Перейти к поиску
м
Строка 11: Строка 11:




'''Определение 1.''' Кластеризация сети G = (V, E) представляет собой тройку <math>(H, \phi,\Sigma) \;</math>, где
'''Определение 1.''' '''Кластеризация''' сети G = (V, E) представляет собой тройку <math>(H, \phi,\Sigma) \;</math>, где


1. H = (V', E') – ориентированный ациклический граф;
1. H = (V', E') – ориентированный ациклический граф;
Строка 32: Строка 32:




Определение 2. Пусть дана комбинационная сеть G = (V, E) с весовой функцией w: V !>• R+, весовой емкостью M и функцией задержки 8: V !>■ R+. Мы говорим, что кластеризация <math>\Gamma = (H, \phi, \Sigma ) \;</math> является допустимой, если для каждого кластера C 2 S значение W(C) не превышает M. Задача кластеризации схемы заключается в вычислении допустимой кластеризации <math>\Gamma \;</math> сети G, такой, что задержка <math>\Gamma \;</math> минимальна среди всех допустимых кластеризаций G.
'''Определение''' 2. Пусть дана комбинационная сеть G = (V, E) с весовой функцией <math>w: V \to R^+ \;</math>, весовой емкостью M и функцией задержки <math>\delta: V \to R^+ \;</math>. Мы говорим, что кластеризация <math>\Gamma = (H, \phi, \Sigma ) \;</math> является '''допустимой''', если для каждого кластера <math>C \in \Sigma \;</math> значение W(C) не превышает M. '''Задача кластеризации схемы''' заключается в вычислении допустимой кластеризации <math>\Gamma \;</math> сети G, такой, что задержка <math>\Gamma \;</math> минимальна среди всех допустимых кластеризаций G.
В одной из первых работ по этой теме Лоулер и коллеги [ ] предложили алгоритм с полиномиальным временем исполнения для задачи кластеризации схемы в специальном случае, когда все вентильные задержки равны нулю (т.е. S(v) = 0 для всех v).
 
 
В одной из первых работ по этой теме Лоулер и коллеги [2] предложили алгоритм с полиномиальным временем исполнения для задачи кластеризации схемы в специальном случае, когда все вентильные задержки равны нулю (т.е. <math>\delta (v) = 0 \;</math> для всех v).


== Основные результаты ==
== Основные результаты ==
4511

правок

Навигация